Original Article

Split Viewer

Blood Res 2022; 57(2):

Published online June 30, 2022

https://doi.org/10.5045/br.2022.2021219

© The Korean Society of Hematology

The impact of nucleic acid testing as a blood donor screening method in transfusion-associated hepatitis C among children with bleeding disorders in Indonesia: a single-center experience

Novie Amelia Chozie1, Melati Arum Satiti1, Damayanti Rusli Sjarif1, Hanifah Oswari1, Ni Ken Ritchie2

1Department of Child Health, Faculty of Medicine University of Indonesia/Dr. Cipto Mangunkusumo Hospital, 2Jakarta Blood Center, Indonesian Red Cross Society, Jakarta Pusat, Indonesia

Correspondence to : Novie Amelia Chozie, M.D., Ph.D.
Department of Child Health, Faculty of Medicine University of Indonesia/Dr. Cipto Mangunkusumo Hospital, Jl. Diponegoro No.71, Salemba, Jakarta Pusat 10430, Indonesia
E-mail: novie.amelia@ui.ac.id

Received: December 22, 2021; Revised: February 8, 2022; Accepted: April 7, 2022

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background
Children with bleeding disorders, such as hemophilia and von Willebrand disease (VWD), have an increased risk of acquiring transfusion-transmitted infections (TTI). Screening methods to exclude blood donations that are at risk of transmitting infection from donors to recipients are critical to preventing disease transmission. Nucleic acid testing (NAT) is the latest blood donor-screening method. This study aimed to determine the incidence of hepatitis C virus (HCV) infection in children with hemophilia and VWD at Dr. Cipto Mangunkusumo Hospital with a history of blood transfusion before and after implementation of a NAT screening method.
Methods
A cohort retrospective study was conducted on children aged 0–18 years with bleeding disorders and a history of blood transfusion. In our center, all blood transfusions before 2015 were screened using non-NAT methods, while all blood transfusions were screened using NAT starting in 2015. Eligible patient characteristics were collected from medical records. From July to December 2019, blood samples were obtained from eligible patients for anti-HCV examination. HCV RNA examinations were performed on subjects with reactive anti-HCV results, and the relative risk was calculated.
Results
In total, 108 eligible participants were included in this study. We observed that 91 (94.3%) patients had history of receiving non-NAT blood transfusions, while 17 (15.7%) patients received NAT-screened blood transfusions. The proportion of anti-HCV reactivity in the non-NAT group and that in the NAT group were 3.3% (3/91) and 0% (0/17), respectively.
Conclusion
None of the patients exhibited reactivity to anti-HCV after implementing the NAT screening method.

Keywords Hemophilia, Von Willebrand, Hepatitis C infection, Blood transfusion, Nucleic acid testing

Article

Original Article

Blood Res 2022; 57(2): 129-134

Published online June 30, 2022 https://doi.org/10.5045/br.2022.2021219

Copyright © The Korean Society of Hematology.

The impact of nucleic acid testing as a blood donor screening method in transfusion-associated hepatitis C among children with bleeding disorders in Indonesia: a single-center experience

Novie Amelia Chozie1, Melati Arum Satiti1, Damayanti Rusli Sjarif1, Hanifah Oswari1, Ni Ken Ritchie2

1Department of Child Health, Faculty of Medicine University of Indonesia/Dr. Cipto Mangunkusumo Hospital, 2Jakarta Blood Center, Indonesian Red Cross Society, Jakarta Pusat, Indonesia

Correspondence to:Novie Amelia Chozie, M.D., Ph.D.
Department of Child Health, Faculty of Medicine University of Indonesia/Dr. Cipto Mangunkusumo Hospital, Jl. Diponegoro No.71, Salemba, Jakarta Pusat 10430, Indonesia
E-mail: novie.amelia@ui.ac.id

Received: December 22, 2021; Revised: February 8, 2022; Accepted: April 7, 2022

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background
Children with bleeding disorders, such as hemophilia and von Willebrand disease (VWD), have an increased risk of acquiring transfusion-transmitted infections (TTI). Screening methods to exclude blood donations that are at risk of transmitting infection from donors to recipients are critical to preventing disease transmission. Nucleic acid testing (NAT) is the latest blood donor-screening method. This study aimed to determine the incidence of hepatitis C virus (HCV) infection in children with hemophilia and VWD at Dr. Cipto Mangunkusumo Hospital with a history of blood transfusion before and after implementation of a NAT screening method.
Methods
A cohort retrospective study was conducted on children aged 0–18 years with bleeding disorders and a history of blood transfusion. In our center, all blood transfusions before 2015 were screened using non-NAT methods, while all blood transfusions were screened using NAT starting in 2015. Eligible patient characteristics were collected from medical records. From July to December 2019, blood samples were obtained from eligible patients for anti-HCV examination. HCV RNA examinations were performed on subjects with reactive anti-HCV results, and the relative risk was calculated.
Results
In total, 108 eligible participants were included in this study. We observed that 91 (94.3%) patients had history of receiving non-NAT blood transfusions, while 17 (15.7%) patients received NAT-screened blood transfusions. The proportion of anti-HCV reactivity in the non-NAT group and that in the NAT group were 3.3% (3/91) and 0% (0/17), respectively.
Conclusion
None of the patients exhibited reactivity to anti-HCV after implementing the NAT screening method.

Keywords: Hemophilia, Von Willebrand, Hepatitis C infection, Blood transfusion, Nucleic acid testing

Fig 1.

Figure 1.Protocol used in the recruit-ment of the subjects.
Blood Research 2022; 57: 129-134https://doi.org/10.5045/br.2022.2021219

Table 1 . Summary of the characteristics of the subjects..

Group 1 (NAT),
N=17 (16%)
Group 2 (Non-NAT),
N=91 (84%)
Gender
Male17 (100%)88 (97%)
Female0 (0%)3 (3%)
Age
<2 years old0 (0%)0 (0%)
2–15 years old14 (82%)72 (79%)
≥16 years old3 (18%)19 (21%)
Diagnosis
Hemophilia A12 (71%)68 (75%)
Hemophilia B5 (29%)22 (24%)
Von Willebrand0 (0%)1 (1%)
Severity
Severe hemophilia11 (65%)54 (59%)
Moderate hemophilia6 (35%)30 (33%)
Mild hemophilia0 (0%)6 (7%)
VWD type 10 (0%)1 (1%)
Inhibitor FVIII
Low titer0 (0%)1 (1%)
High titer0 (0%)3 (3.3%)
Negative16 (94%)85 (93.4%)
History of inhibitor1 (6%)2 (2.2%)
Number of bagsa) during transfusion
1–4 bags9 (53%)42 (46%)
5–10 bags6 (35%)36 (40%)
>10 bags (volume of each bag ±50–180 mL)2 (12%)13 (14%)
Age of first transfusion
<2 years old6 (35%)34 (37%)
2–15 years old11 (65%)57 (63%)
≥16 years old0 (0%)0 (0%)
Major surgery
Yes0 (0%)18 (20%)
No17 (100%)73 (80%)

a)Any type of blood component product..

Abbreviations: NAT, nucleic acid testing; VWD, Von Willebrand disease..


Table 2 . Association between using NAT and the anti-HCV result..

Anti-HCVTotalPRR (95% CI)
Reactive, %Non-reactive, %
NAT0 (0)17 (100)170.4481.034 (0.996–1.074)
Non-NAT3 (3.3)88 (96.7)91

Abbreviations: CI, confidence interval; HCV, hepatitis C virus; NAT, nucleic acid testing; RR, relative risk..


Table 3 . Summary of the characteristics of thesubjects with reactive anti-HCV..

Subject informationSubject ASubject BSubject C
Blood examination
a. Anti HCVReactiveReactiveReactive
b. HCV RNAVirus not foundVirus not foundVirus not found
Characteristics
a. GenderMaleMaleMale
b. Age16 y.o.11 y.o.10 y.o.
c. DiagnosisHemophilia AHemophilia AHemophilia B
d. SeveritySevereModerateModerate
e. InhibitorNegativeNegativeNegative
f. History of major surgeryNoneNoneNone
g. First transfusion (yr/age)2009/6 y.o.2010/2 y.o.2012/3 y.o.
h. Number of bags per transfusion (volume each bag ±50–180 mL)5–10 bags1–3 bags1–4 bags
i. Blood screening methodChLIAChLIAChLIA

Abbreviations: ChLIA, chemoluminescence immunoassay; y.o., years old..


Blood Res
Volume 59 2024

Stats or Metrics

Share this article on

  • line

Related articles in BR

Blood Research

pISSN 2287-979X
eISSN 2288-0011
qr-code Download