Blood Res (2024) 59:9
Published online March 4, 2024
https://doi.org/10.1007/s44313-024-00007-9
© The Korean Society of Hematology
Correspondence to : *Rim Frikha
frikha_rim@yahoo.fr
© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Objective Our study aimed to investigate the association between cytochrome P450 1A1 (CYP1A1) polymorphisms (T3801C and A2455G) and acute lymphoblastic leukemia (ALL) risk, considering genetic models and ethnicity.
Materials and methods PubMed, Embase, Web of Knowledge, Scopus, and the Cochrane electronic databases were searched using combinations of keywords related to CYP1A1 polymorphisms and the risk of ALL. Studies retrieved from the database searches underwent screening based on strict inclusion and exclusion criteria.
Results In total, 2822 cases and 4252 controls, as well as 1636 cases and 2674 controls of the C3801T and A2455G variants of CYP1A1, respectively, were included in this meta-analysis. The T3801C polymorphism of CYP1A1 significantly increases the risk of ALL, particularly those observed in Asian and Hispanic populations, independent of age. Similarly, the A2455G polymorphism of CYP1A1 plays a significant role in the susceptibility to ALL in all genetic models, except the heterozygous form. This association was observed mainly in mixed populations and in both children and adults (except in the heterozygous model).
Conclusion Our comprehensive analysis indicates that the T3801 and A2455G polymorphisms of CYP1A1 may increase the risk of ALL depending on ethnicity. Therefore, both variants should be considered promising biomarkers for ALL risk. Further large-scale investigations are necessary to assess other factors, such as gene-gene or gene-environment interactions.
Keywords Cytochrome, Acute lymphoblastic leukemia, Risk, Meta-analysis
Blood Res 2024; 59():
Published online March 4, 2024 https://doi.org/10.1007/s44313-024-00007-9
Copyright © The Korean Society of Hematology.
Imen Frikha1,2, Rim Frikha1,3*, Moez Medhaffer1,2, Hanen Charfi1,2, Fatma Turki1,3 and Moez Elloumi1,2
1Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
2Department of Hematology, Hedi Chaker Hospital, Sfax, Tunisia
3Department of Medical Genetics, Hedi Chaker Hospital, Sfax, Tunisia
Correspondence to:*Rim Frikha
frikha_rim@yahoo.fr
© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Objective Our study aimed to investigate the association between cytochrome P450 1A1 (CYP1A1) polymorphisms (T3801C and A2455G) and acute lymphoblastic leukemia (ALL) risk, considering genetic models and ethnicity.
Materials and methods PubMed, Embase, Web of Knowledge, Scopus, and the Cochrane electronic databases were searched using combinations of keywords related to CYP1A1 polymorphisms and the risk of ALL. Studies retrieved from the database searches underwent screening based on strict inclusion and exclusion criteria.
Results In total, 2822 cases and 4252 controls, as well as 1636 cases and 2674 controls of the C3801T and A2455G variants of CYP1A1, respectively, were included in this meta-analysis. The T3801C polymorphism of CYP1A1 significantly increases the risk of ALL, particularly those observed in Asian and Hispanic populations, independent of age. Similarly, the A2455G polymorphism of CYP1A1 plays a significant role in the susceptibility to ALL in all genetic models, except the heterozygous form. This association was observed mainly in mixed populations and in both children and adults (except in the heterozygous model).
Conclusion Our comprehensive analysis indicates that the T3801 and A2455G polymorphisms of CYP1A1 may increase the risk of ALL depending on ethnicity. Therefore, both variants should be considered promising biomarkers for ALL risk. Further large-scale investigations are necessary to assess other factors, such as gene-gene or gene-environment interactions.
Keywords: Cytochrome, Acute lymphoblastic leukemia, Risk, Meta-analysis
Table 1 . Characteristics of included studies.
First author | Year of publication | Ethnicity (Country) | Polymorphism Study | Age group | Number | |
---|---|---|---|---|---|---|
Cases | Controls | |||||
Krajinovic [18] | 1999 | Caucasian (Canada) | T3801C, A2455G | Child | 517 | 893 |
Gao [19] | 2003 | Asian (China) | T3801C, A2455G | Child | 156 | 225 |
Balta [20] | 2003 | Mixed (Turky) | T3801C | Child | 105 | 145 |
Joseph [21] | 2004 | Asian (India) | T3801C, A2455G | Child | 236 | 236 |
Canalle [22] | 2004 | Mixed (Brazil) | T3801C | Child | 113 | 221 |
Gallegos-Arreole [23] | 2004 | Mixed (Mexican) | A2455G | Adult | 136 | 136 |
Selvin [24] | 2004 | Mixed (California) | A2455G | Child | 175 | 175 |
Clavel [25] | 2005 | Mixed (France) | T3801C | Child | 190 | 105 |
Liu QX [26] | 2005 | Asian (China) | T3801C | Adult | 112 | 179 |
Pakakasama [27] | 2005 | Asian (Thailand) | T3801C | Child | 91 | 320 |
Aydin-Sayitoglu [28] | 2006 | Caucasian (Turky) | T3801C | Adult | 36 | 140 |
Aydin-Sayitoglu [28] | 2006 | Caucasian (Turky) | T3801C | Child | 119 | 140 |
Bolufer [13] | 2007 | Caucasian (Spain) | T3801C | Mixt | 92 | 403 |
Gallegos-Arreola [29] | 2008 | Hispanic (Mexican) | T3801C | Adult | 210 | 228 |
Chen [30] | 2008 | Asian (China) | T3801C | Mixt | 120 | 204 |
Lee [31] | 2009 | Asian (Korea) | T3801C, A2455G | Child | 207 | 321 |
Yamaguti [14] | 2010 | Caucasian (Brazil) | T3801C, A2455G | Mixt | 198 | 198 |
Swinney [32] | 2011 | Hispanic (USA) | T3801C, A2455G | Child | 302 | 814 |
Swinney [32] | 2011 | Caucasian (USA) | A2455G | Child | 171 | 437 |
Swinney [32] | 2011 | Caucasian (USA) | A2455G | Child | 71 | 204 |
Suneetha [33] | 2011 | Asian (India) | T3801C | Child | 91 | 150 |
Razmkhah [34] | 2011 | Mixed (Iran) | A2455G | Child | 85 | 94 |
Bonaventure [35] | 2012 | Caucasian (France) | T3801C | Child | 430 | 548 |
Agha [36] | 2013 | African (Egypt) | T3801C, A2455G | Child | 558 | 600 |
Ouerhani [37] | 2013 | African (Tunisia) | T3801C | Mixt | 100 | 106 |
Nida [11] | 2017 | Asian (India) | T3801C | Child | 200 | 200 |
Table 2 . Results of meta-analysis for the CYP1A1 gene T3801C polymorphisms in ALL according to the ethnicity.
Model | Ethnicity | Number of studies | Test of association | Test of heterogeneity | Publication bias | ||||
---|---|---|---|---|---|---|---|---|---|
OR | 95% CI | p-val | Model | p-val | I2 | p-val (Egger’s test) | |||
Allelecontrast (C vs. T) | Overall | 21 | 1,31 | [1.08; 1.58] | 0,00* | Random | 0,00* | 75,46% | 0,21 |
Asian | 8 | 1,36 | [1.07; 1.71] | 0,00* | Random | 0,00* | 64,87% | 0,07 | |
African | 2 | 1,48 | [0.92; 2.37] | 0,10 | Fixed | 0,16 | 49,35% | NA | |
Caucasian | 6 | 1,10 | [0.91; 1.33] | 0,31 | Fixed | 0,14 | 38,9% | 0,47 | |
Hispanic | 2 | 2,22 | [0.91; 5.43] | 0,07 | Random | 0,00* | 91,94% | NA | |
Mixed | 3 | 1,05 | [0.80; 1.38] | 0,68 | Fixed | 0,66 | 0% | 0,13 | |
Recessive model (CC vs. CT+TT) | Overall | 21 | 1,36 | [0.86; 2.16] | 0,18 | Random | 0,00* | 72,21% | 0,68 |
Asian | 8 | 1,01 | [0.78; 1.31] | 0,92 | Fixed | 0,16 | 33,11% | 0,07 | |
African | 2 | 2,21 | [0.47; 10.44] | 0,31 | Fixed | 0,50 | 0% | NA | |
Caucasian | 6 | 0,63 | [0.30; 1.33] | 0,23 | Fixed | 0,94 | 0% | 0,51 | |
Hispanic | 2 | 4,91 | [1.61; 14.93] | 0,00* | Random | 0,01* | 82,35% | NA | |
Mixed | 3 | 1,44 | [0.18; 11.56] | 0,72 | Random | 0,05 | 66,3% | 0,77 | |
Dominant model (CC+CT vs. TT) | Overall | 21 | 1,40 | [1.17; 1.68] | 0,00* | Random | 0,00* | 56,88% | 0,56 |
Asian | 8 | 1,67 | [1.30; 2.15] | 6,14E-05* | Random | 0,09 | 42,96% | 0,44 | |
African | 2 | 1,43 | [0.86; 2.37] | 0,16 | Fixed | 0,18 | 41,92% | NA | |
Caucasian | 6 | 1,17 | [0.95; 1.44] | 0,12 | Fixed | 0,10 | 45,29% | 0,66 | |
Hispanic | 2 | 1,80 | [0.71; 4.59] | 0,21 | Random | 0,01* | 84,68% | NA | |
Mixed | 3 | 1,02 | [0.75; 1.39] | 0,85 | Fixed | 0,63 | 0% | 0,59 | |
Homozygous (CC vs.TT) | Overall | 21 | 1,59 | [0.99; 2.53] | 0,05 | Random | 0,00* | 68,49% | 0,47 |
Asian | 8 | 1,41 | [0.92; 2.15] | 0,10 | Random | 0,06 | 47,23% | 0,11 | |
African | 2 | 2,27 | [0.48; 10.72] | 0,29 | Fixed | 0,47 | 0% | NA | |
Caucasian | 6 | 0,67 | [0.32; 1.41] | 0,29 | Fixed | 0,96 | 0% | 0,42 | |
Hispanic | 2 | 5,02 | [1.26; 20.00] | 0,02* | Random | 0,00* | 86,21% | NA | |
Mixed | 3 | 1,46 | [0.19; 10.86] | 0,70 | Random | 0,06 | 63,5% | 0,77 | |
Heterozygous (CT vs. TT) | Overall | 21 | 1,38 | [1.17; 1.64] | 0,00* | Random | 0,01* | 44,66% | 0,55 |
Asian | 8 | 1,83 | [1.48; 2.25] | 1,16E-08* | Fixed | 0,29 | 17,31% | 0,25 | |
African | 2 | 1,34 | [0.79; 2.27] | 0,26 | Fixed | 0,23 | 27,98% | NA | |
Caucasian | 6 | 1,22 | [0.89; 1.68] | 0,20 | Random | 0,09 | 47,18% | 0,83 | |
Hispanic | 2 | 1,18 | [0.81; 1.71] | 0,37 | Fixed | 0,18 | 43,82% | NA | |
Mixed | 3 | 1 | [0.73; 1.37] | 0,99 | Fixed | 0,34 | 05,98% | 0,93 |
NA Not available, OR Odds ratio.
*significance (p < 0.05).
Table 3 . Results of meta-analysis for the CYP1A1 gene T3801C polymorphisms in ALL according to the Age.
Model | Age | Number of studies | Test of association | Test of heterogeneity | Publication bias | ||||
---|---|---|---|---|---|---|---|---|---|
OR | 95% CI | p-val | Model | p-val | I2 | p-val (Egger’s test) | |||
Allelecontrast (C vsT) | Overall | 21 | 1,31 | [1.08; 1.58] | 0,00* | Random | 0,00* | 75,46% | 0,21 |
Child | 14 | 1,27 | [1.08; 1.49] | 0,00* | Random | 0,02* | 48,67% | 0,20 | |
Mixt | 4 | 1,14 | [0.76; 1.72] | 0,51 | Random | 0,05 | 60,27% | 0,95 | |
Adult | 3 | 1,57 | [0.67; 3.68] | 0,29 | Random | 0,00* | 92,11% | 0,50 | |
Recessive model (CC vs CT+TT) | Overall | 21 | 1,36 | [0.86; 2.16] | 0,18 | Random | 0,00* | 72,21% | 0,68 |
Child | 14 | 1,26 | [0.81; 1.96] | 0,29 | Random | 0,03* | 46,09% | 0,57 | |
Mixt | 4 | 1,03 | [0.63; 1.69] | 0,88 | Fixed | 0,51 | 0 | 0,93 | |
Adult | 3 | 1,88 | [0.28; 12.56] | 0,51 | Random | 0,00* | 93,74% | 0,85 | |
Dominant model (CC+CT vs TT) | Overall | 21 | 1,40 | [1.17; 1.68] | 0,00* | Random | 0,00* | 56,88% | 0,56 |
Child | 14 | 1,35 | [1.12; 1.62] | 0,00* | Random | 0,06 | 40,07% | 0,36 | |
Mixt | 4 | 1,25 | [0.76; 2.05] | 0,37 | Random | 0,05 | 61,45% | 0,99 | |
Adult | 3 | 1,85 | [1.00; 3.41] | 0,04 | Random | 0,03* | 71,08% | 0,00 | |
Homozygous (CC vs TT) | Overall | 21 | 1,59 | [0.99; 2.53] | 0,05 | Random | 0,00* | 68,49% | 0,47 |
Child | 14 | 1,41 | [0.90; 2.20] | 0,12 | Random | 0,04* | 42,59% | 0,51 | |
Mixt | 4 | 1,31 | [0.75; 2.28] | 0,33 | Fixed | 0,44 | 0 | 0,91 | |
Adult | 3 | 2,56 | [0.48; 13.57] | 0,26 | Random | 0,00* | 89,84% | 0,72 | |
Heterozygous (CT vs TT) | Overall | 21 | 1,38 | [1.17; 1.64] | 0,00* | Random | 0,01* | 44,66% | 0,55 |
Child | 14 | 1,38 | [1.12; 1.69] | 0,00* | Random | 0,03* | 45,18% | 0,28 | |
Mixt | 4 | 1,27 | [0.78; 2.07] | 0,32 | Random | 0,07 | 57,24% | 0,97 | |
Adult | 3 | 1,59 | [1.14; 2.21] | 0,00* | Fixed | 0,11 | 54,17% | 0,74 |
NA Not available, OR Odds ratio.
*significance (p < 0.05).
Table 4 . Results of meta-analysis for the CYP1A1 gene A2455G polymorphisms and ALL risk according to the ethnicity.
Model | Ethnicity | Number of studies | Test of association | Test of Heterogeneity | Publication bias | ||||
---|---|---|---|---|---|---|---|---|---|
OR | 95% CI | p-val | Model | p-val | I2 | p-val (Egger’s test) | |||
Allelecontrast (G vs. A) | Overall | 12 | 1,25 | [1.09; 1.42] | 0,00* | Fixed | 0,14 | 30,92% | 0,76 |
Caucasian | 5 | 1,21 | [0.95; 1.54] | 0,11 | Fixed | 0,81 | 0,00% | 0,39 | |
Asian | 3 | 1,36 | [0.80; 2.31] | 0,25 | Random | 0,01* | 76,95% | 0,11 | |
Mixed | 4 | 1,26 | [1.03; 1.53] | 0,02* | Fixed | 0,13 | 46,28% | 0,69 | |
Recessive model (GG vs GA+AA) | Overall | 11 | 1,94 | [1.39; 2.71] | 0,00* | Fixed | 0,79 | 0,00% | 0,58 |
Caucasian | 5 | 2,03 | [1.08; 3.83] | 0,02* | Fixed | 0,78 | 0,00% | 0,76 | |
Asian | 3 | 1,51 | [0.81; 2.78] | 0,18 | Fixed | 0,32 | 10,13% | 0,45 | |
Mixed | 3 | 2,25 | [1.35; 3.73] | 0,00* | Fixed | 0,52 | 0,00% | 0,46 | |
Dominant model (GG+GA vs AA) | Overall | 12 | 1,19 | [1.01; 1.39] | 0,03 | Fixed | 0,19 | 25,08% | 0,77 |
Caucasian | 5 | 1,13 | [0.85; 1.50] | 0,37 | Fixed | 0,72 | 0,00% | 0,54 | |
Asian | 3 | 1,39 | [0.75; 2.58] | 0,28 | Random | 0,02* | 71,87% | 0,46 | |
Mixed | 4 | 1,15 | [0.91; 1.46] | 0,23 | Fixed | 0,18 | 38,39% | 0,94 | |
Homozygous (GG vs AA) | Overall | 11 | 2,02 | [1.43; 2.85] | 0,00* | Fixed | 0,69 | 0,00% | 0,65 |
Caucasian | 5 | 1,92 | [0.99; 3.70] | 0,05 | Fixed | 0,86 | 0,00% | 0,94 | |
Asian | 3 | 1,67 | [0.88; 3.17] | 0,11 | Fixed | 0,22 | 33,47% | 0,46 | |
Mixed | 3 | 2,37 | [1.41; 3.97] | 0,00* | Fixed | 0,32 | 11,46% | 0,60 | |
Heterozygous (GA vs AA) | Overall | 12 | 1,09 | [0.92; 1.29] | 0,3 | Fixed | 0,31 | 13,5% | 0,54 |
Caucasian | 5 | 1,05 | [0.78; 1.42] | 0,72 | Fixed | 0,51 | 0,00% | 0,64 | |
Asian | 3 | 1,31 | [0.75; 2.27] | 0,33 | Random | 0,07 | 61,24% | 0,35 | |
Mixed | 4 | 1,03 | [0.80; 1.32] | 0,79 | Fixed | 0,33 | 11,26% | 0,77 |
NA Not available, OR Odds ratio.
*significance (p < 0.05).
Table 5 . Results of meta-analysis for the CYP1A1 gene A2455G polymorphisms and ALL risk according to the age.
Model | Age | Number of studies | Test of association | Test of heterogeneity | Publication bias | ||||
---|---|---|---|---|---|---|---|---|---|
OR | 95% CI | p-val | Model | p-val | I2 | p-val (Egger’s test) | |||
Allelecontrast (G vs A) | Overall | 12 | 1,25 | [1.09; 1.42] | 0,00* | Fixed | 0,14 | 30,92 | 0,76 |
Child | 10 | 1,18 | [1.02; 1.37] | 0,02* | Fixed | 0,21 | 24,87 | 0,93 | |
Adult | 1 | 1,75 | [1.22; 2.51] | 0,00* | Fixed | NA | NA | NA | |
Mixt | 1 | 1,25 | [0.76; 2.06] | 0,37 | Fixed | NA | NA | NA | |
Recessive model (GG vs GA+AA) | Overall | 11 | 1,94 | [1.39; 2.71] | 0,00* | Fixed | 0,79 | 0 | 0,58 |
Child | 9 | 1,84 | [1.27; 2.67] | 0,00* | Fixed | 0,82 | 0 | 0,90 | |
Adult | 1 | 3,08 | [1.32; 7.20] | 0,00* | Fixed | NA | NA | NA | |
Mixt | 1 | 1 | [0.19; 5.07] | 1 | Fixed | NA | A | NA | |
Dominant model (GG+GA vs AA) | Overall | 12 | 1,19 | [1.01; 1.39] | 0,03* | Fixed | 0,19 | 25,08 | 0,77 |
Child | 10 | 1,11 | [0.93; 1.32] | 0,23 | Fixed | 0,28 | 17,4 | 0,65 | |
Adult | 1 | 1,82 | [1.12; 2.97] | 0,01* | Fixed | NA | NA | NA | |
Mixt | 1 | 1,36 | [0.75; 2.43] | 0,30 | Fixed | NA | NA | NA | |
Homozygous (GG vs AA) | Overall | 11 | 2,02 | [1.43; 2.85] | 0,00* | Fixed | 0,69 | 0 | 0,65 |
Child | 9 | 1,85 | [1.26; 2.71] | 0,00* | Fixed | 0,80 | 0 | 0,97 | |
Adult | 1 | 3,87 | [1.59; 9.41] | 0,00* | Fixed | NA | NA | NA | |
Mixt | 1 | 1,11 | [0.21; 5.74] | 0,89 | Fixed | NA | NA | NA | |
Heterozygous (GA vs AA) | Overall | 12 | 1,09 | [0.92; 1.29] | 0,30 | Fixed | 0,31 | 13,5 | 0,54 |
Child | 10 | 1,01 | [0.84; 1.22] | 0,84 | Fixed | 0,37 | 7,55 | 0,42 | |
Adult | 1 | 1,55 | [0.93; 2.57] | 0,09 | Fixed | NA | NA | NA | |
Mixt | 1 | 1,38 | [0.76; 2.52] | 0,28 | Fixed | NA | NA | NA |
NA Not available, OR Odds ratio.
*significance (p < 0.05).
Wonjin Jang, Suejung Jo, Jae Won Yoo, Seongkoo Kim, Jae Wook Lee, Pil-Sang Jang, Nack-Gyun Chung, Bin Cho
Blood Res 2022; 57(4): 256-263Stephanie Wo, Hannah Levavi, John Mascarenhas, Marina Kremyanskaya, Shyamala Navada, Michal Bar-Natan, Sara S. Kim
Blood Res 2022; 57(2): 135-143Saeed Zaka Khosravi, Samira Molaei Ramshe, Mehdi Allahbakhshian Farsani, Saeed Solali, Mohammadreza Moonesi, Majid Farshdousti Hagh
Blood Res 2021; 56(2): 79-85