Blood Res 2021; 56(3):
Published online September 30, 2021
https://doi.org/10.5045/br.2021.2021045
© The Korean Society of Hematology
Correspondence to : Asral Wirda Ahmad Asnawi, M.D., Ph.D. Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Persiaran Ilmu, Putra Nilai, Nilai, Negeri Sembilan 71800, Malaysia E-mail: wirda@usim.edu.my
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Background
With the emergence of tyrosine kinase inhibitors and the incorporation of stringent measurable residual disease (MRD) monitoring, risk stratification for BCR-ABL1-positive acute lymphoblastic leukemia (ALL) patients has changed significantly. However, whether this monitoring can replace conventional risk factors in determining whether patients need allogeneic stem cell transplantation is still unclear. This study aimed to determine the impact of BCR-ABL1 monitoring on the outcome of patients with BCR-ABL1-positive ALL after allogeneic stem cell transplantation.
Methods
We retrospectively analyzed the survival outcome of patients with BCR-ABL1-positive ALL based on the quantification of BCR-ABL1 at 3 timepoints: the end of induction (timepoint 1), post-consolidation week 16 (timepoint 2), and the end of treatment for patients who were either transplant-eligible or non-transplant eligible (timepoint 3).
Results
From 2006 to 2018, a total of 96 patients newly diagnosed with BCR-ABL1-positive ALL were treated with chemotherapy and tyrosine kinase inhibitors. Thirty-eight (41.3%) patients achieved complete remission, and 33 patients underwent allogeneic stem cell transplantation. Our data showed that pre-transplant MRD monitoring by real-time quantitative polymerase chain reaction had the highest correlation with survival in patients with BCR-ABL1-positive ALL, especially for those who underwent allogeneic stem cell transplantation.
Conclusion
Patients without MRD pre-transplantation had superior survival compared with those who had MRD, and they had excellent long-term outcomes after allogeneic stem cell transplantation.
Keywords ALL, BCR-ABL1, Philadelphia, Survival, TKI
Blood Res 2021; 56(3): 175-183
Published online September 30, 2021 https://doi.org/10.5045/br.2021.2021045
Copyright © The Korean Society of Hematology.
Siew Lian Chong1,2, Asral Wirda Ahmad Asnawi1,2, Tze Shin Leong3, Jenq Tzong Tan4, Kian Boon Law5, Siong Leng Hon6, Rui Jeat Fann1,7, Sen Mui Tan1
1Department of Haematology, Hospital Ampang, Selangor, 2Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai, 3Department of Haematology, Hospital Umum Sarawak, Kuching, 4Department of Medicine, Hospital Taiping, Taiping, 5Institute for Clinical Research, National Institutes of Health (NIH), Shah Alam, 6Department of Medicine, Hospital Melaka, Melaka, 7Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Malaysia
Correspondence to:Asral Wirda Ahmad Asnawi, M.D., Ph.D. Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Persiaran Ilmu, Putra Nilai, Nilai, Negeri Sembilan 71800, Malaysia E-mail: wirda@usim.edu.my
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Background
With the emergence of tyrosine kinase inhibitors and the incorporation of stringent measurable residual disease (MRD) monitoring, risk stratification for BCR-ABL1-positive acute lymphoblastic leukemia (ALL) patients has changed significantly. However, whether this monitoring can replace conventional risk factors in determining whether patients need allogeneic stem cell transplantation is still unclear. This study aimed to determine the impact of BCR-ABL1 monitoring on the outcome of patients with BCR-ABL1-positive ALL after allogeneic stem cell transplantation.
Methods
We retrospectively analyzed the survival outcome of patients with BCR-ABL1-positive ALL based on the quantification of BCR-ABL1 at 3 timepoints: the end of induction (timepoint 1), post-consolidation week 16 (timepoint 2), and the end of treatment for patients who were either transplant-eligible or non-transplant eligible (timepoint 3).
Results
From 2006 to 2018, a total of 96 patients newly diagnosed with BCR-ABL1-positive ALL were treated with chemotherapy and tyrosine kinase inhibitors. Thirty-eight (41.3%) patients achieved complete remission, and 33 patients underwent allogeneic stem cell transplantation. Our data showed that pre-transplant MRD monitoring by real-time quantitative polymerase chain reaction had the highest correlation with survival in patients with BCR-ABL1-positive ALL, especially for those who underwent allogeneic stem cell transplantation.
Conclusion
Patients without MRD pre-transplantation had superior survival compared with those who had MRD, and they had excellent long-term outcomes after allogeneic stem cell transplantation.
Keywords: ALL, BCR-ABL1, Philadelphia, Survival, TKI
Table 1 . Baseline clinical characteristics of all patients with
Total (N=96) | Parameter | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Age, years | 15–39 (AYA) | 40–59 (adult) | ≥60 (elderly) | |||||||||||||||
N (%) | 53 (55.2) | 38 (39.6) | 5 (5.2) | |||||||||||||||
Median (range) | 37.5 (14–59) | |||||||||||||||||
Sex | Male | Female | ||||||||||||||||
N (%) | 42 (43.8) | 54 (56.3) | ||||||||||||||||
Ethnicity | Malay | Chinese | Indian | Others | ||||||||||||||
N (%) | 48 (50.0) | 37 (38.5) | 9 (9.4) | 2 (2.1) | ||||||||||||||
WCC, at diagnosis | >30×109/L | <30×109/L | ||||||||||||||||
N (%) | 51 (53.1) | 45 (46.9) | ||||||||||||||||
Median (range), ×109/L | 36 (2–500) | |||||||||||||||||
MRD status | TP1 | TP2 | TP3 | |||||||||||||||
≥0.1% | <0.1% | ≥0.1% | <0.1% | ≥0.1% | <0.1% | |||||||||||||
N | 31 | 25 | 25 | 40 | 13 | 36 | ||||||||||||
Missing | 40 | 31 | 47 | |||||||||||||||
Treatment modalities | GMALL/BFM | Hyper-CVAD | TKIs | |||||||||||||||
Yes (2012–2018) | No (2006–2011) | |||||||||||||||||
N (%) | 49 (51) | 47 (49) | 62 (64.6) | 34 (35.4) | ||||||||||||||
Treatment response | Remission post-induction | Overall remission | Relapse | Refractory | Induction death | |||||||||||||
N (%) | 80 (83.3) | 38 (41.3) | 34 (37.0) | 10 (10.9) | 4 (4.3) | |||||||||||||
Transplant | Yes | No | ||||||||||||||||
N (%) | 38 (39.6) (33-Allogeneic; 5-Autologous) | 58 (60.4) |
Values are presented as mean, median (range), or number (%)..
Abbreviations: ALL, acute lymphoblastic leukemia; AYA, adolescent and young adult; MRD, measurable residual disease; TKI, tyrosine kinase inhibitor; TP1, timepoint 1; TP2, timepoint 2; TP3, timepoint 3; WCC, white cell count..
Table 2 . Allogeneic stem cell transplant recipient details..
Total (N=33) | Parameter | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Age, years | 15–39 (AYA) | 40–59 (adult) | ≥60 (elderly) | |||||||||||||||
N (%) | 20 (60.6) | 13 (39.4) | 0 (0) | |||||||||||||||
Median (range) | 37 (15–59) | |||||||||||||||||
Sex | Male | Female | ||||||||||||||||
N (%) | 16 (48.5) | 17 (51.5) | ||||||||||||||||
Ethnicity | Malay | Chinese | Indian | Others | ||||||||||||||
N (%) | 15 (45.5) | 15 (45.5) | 3 (9.0) | 0 (0) | ||||||||||||||
Disease status at transplant | CR1 | CR>1 | ||||||||||||||||
N (%) | 28 (84.8) | 5 (15.2) | ||||||||||||||||
Pre-transplant | <0.1% | ≥0.1% | ||||||||||||||||
N (%) | 25 (75.8) | 8 (24.2) | ||||||||||||||||
WCC at diagnosis | >30×109/L | <30×109/L | ||||||||||||||||
N (%) | 21 (63.6) | 12 (36.4) | ||||||||||||||||
Median (range), ×109/L | 48 (2–500) | |||||||||||||||||
Blood type mismatch | None | Minor | Major | Bidirectional | ||||||||||||||
N (%) | 25 (75.8) | 4 (12.1) | 3 (9.1) | 1 (3.0) | ||||||||||||||
Gender mismatch (donor-recipient) | Female to male | Male to female | Male to male | Female to female | Missing | |||||||||||||
N (%) | 4 (12.1) | 8 (24.2) | 10 (30.3) | 10 (30.3) | 1 (3.0) | |||||||||||||
CMV status | Recipient negative | Recipient positive | Missing | |||||||||||||||
N (%) | ||||||||||||||||||
Donor negative | 3 (9.1) | 2 (6.1) | 5 (15.1) | |||||||||||||||
Donor positive | 1 (3.0) | 22 (66.7) | ||||||||||||||||
Type of allogeneic transplant | Matched- sibling | Matched- unrelated | Haplo-matched | Cord blood | ||||||||||||||
N (%) | 27 (81.8) | 3 (9.1) | 2 (6.1) | 1 (3.0) | ||||||||||||||
Stem cell source | Peripheral blood | Bone marrow | Umbilical cord | |||||||||||||||
N (%) | 32 (97.0) | 0 | 1 (3.0) | |||||||||||||||
Median stem cell dose (×106/kg) | 5.0 (3.0-11) | |||||||||||||||||
Conditioning regimen | Myeloablative | RIC | TBI-based | Non-TBI | ||||||||||||||
N (%) | 29 (87.9) | 4 (12.1) | 22 (66.7) | 11 (33.3) | ||||||||||||||
Post-transplant response | Remission | Relapse/death | ||||||||||||||||
N (%) | 23 (69.7) | 10 (30.3) | ||||||||||||||||
GVHD | Acute | Chronic | ||||||||||||||||
N (%) | 13 (44.8) | 14 (50.0) | ||||||||||||||||
Grade I 4 | Limited 7 | |||||||||||||||||
Grade II 6 | Extensive 7 | |||||||||||||||||
Grade III 3 | ||||||||||||||||||
Grade IV0 | ||||||||||||||||||
Missing | 4 | 5 | ||||||||||||||||
No GVHD | ||||||||||||||||||
N (%) | 16 (55.2) | 14 (50.0) | ||||||||||||||||
Mortality rate | Alive | Dead | ||||||||||||||||
N (%) | 20 (60.6) | 13 (39.4) | ||||||||||||||||
Relapse/disease progression | 6 | |||||||||||||||||
Infection/transplant-related mortality | 7 |
Values are presented as mean, median (range), or number (%)..
Abbreviations: AYA, adolescent and young adult; CR, complete remission; GVHD, graft-versus-host disease; RIC, reduced intensity conditioning; TBI, total body irradiation; GVHD, graft-versus-host disease; WCC, white cell count..
Table 3 . Univariable analysis of factors predictive for OS..
Characteristic | All | Transplanted | |||||
---|---|---|---|---|---|---|---|
3-year OS (%) | 3-year OS (%) | ||||||
Age group | |||||||
AYA | 39.0 | 0.064 | 52.9 | 0.690 | |||
Adult and elderly | 19.6 | 55.0 | |||||
Sex | |||||||
Male | 33.6 | 0.876 | 54.2 | 0.906 | |||
Female | 26.8 | 52.9 | |||||
WCC at diagnosis | |||||||
>30×109/L | 25.5 | 0.585 | 52.3 | 0.684 | |||
<30×109/L | 35.9 | 63.6 | |||||
MRD status (%) | ≥0.1 | <0.1 | ≥0.1 | <0.1 | |||
TP1 | 36.7 | 36.1 | 0.974 | ||||
TP2 | 23.5 | 53.1 | 0.077 | ||||
TP3 | 11.5 | 65.4 | 0.005 | 25.0 | 73.9 | 0.003 | |
Chemotherapy | |||||||
GMALL/BFM | 25.7 | 0.081 | |||||
Hyper-CVAD | 33.7 | ||||||
TKI | |||||||
Yes (2012–2018) | 33.7 | 0.390 | |||||
No (2006–2011) | 23.5 | ||||||
Transplant | |||||||
Yes | 58.9 | <0.001 | |||||
No | 10.6 | ||||||
Disease status at transplant | |||||||
CR1 | 65.9 | 0.003 | |||||
CR>1 | 16.7 |
Significant
Abbreviations: ALL, acute lymphoblastic leukemia; AYA, adolescent and young adult; CR, complete remission; MRD, measurable residual disease; OS, overall survival; TKI, tyrosine kinase inhibitor; TP1, timepoint 1; TP2, timepoint 2; TP3, timepoint 3; WCC, white cell count..
Table 4 . Multivariable analysis of factors predictive of OS and DFS in transplant recipients..
Characteristic | Risk of relapse or death | Risk of death | |||||
---|---|---|---|---|---|---|---|
HR | 95% CI | HR | 95% CI | ||||
Pre-transplant | 4.106 | 1.226–13.752 | 0.022 | 4.358 | 1.301–14.597 | 0.017 | |
Transplant in CR>1 | 3.787 | 1.113–11.520 | 0.033 | 4.582 | 1.352–15.528 | 0.016 |
Abbreviations: CI, confidence interval; CR, complete remission; DFS, disease-free survival; HR, hazard ratio; OS, overall survival..
Alireza Sadeghi, Somayeh Sadeghi, Mohammad Saleh Peikar, Maryam Yazdi, Mehran Sharifi, Safie Ghafel, Farzin Khorvash, Behrooz Ataei, Mohammad Reza Safavi, Elahe Nasri
Blood Res 2023; 58(2): 91-98Fatıma Ceren Tuncel, Istemi Serin, Sacide Pehlivan, Yasemin Oyaci, Mustafa Pehlivan
Blood Res 2022; 57(4): 250-255Stephanie Wo, Hannah Levavi, John Mascarenhas, Marina Kremyanskaya, Shyamala Navada, Michal Bar-Natan, Sara S. Kim
Blood Res 2022; 57(2): 135-143