Korean J Hematol 2012; 47(2):
Published online June 26, 2012
https://doi.org/10.5045/kjh.2012.47.2.105
© The Korean Society of Hematology
1Division of Hematology and Oncology, Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea.
2Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea.
3Division of Hematology-Oncology, Soonchunhyang University College of Medicine, Seoul, Korea.
Correspondence to : Correspondence to Young Joo Min, M.D., Ph.D. Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, 290-3, Jeonha-dong, Dong-gu, Ulsan 682-714, Korea. Tel: +82-52-250-8832, Fax: +82-52-250-8520, yjmin@uuh.ulsan.kr
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Arsenic trioxide (As2O3) is a well-known and effective treatment that can result in clinical remission for patients diagnosed with acute promyelocytic leukemia (APL). The biologic efficacy of As2O3 in APL and solid tumor cells has been explained through its actions on anti-proliferation, anti-angiogenesis, and apoptotic signaling pathways. We theorize that As2O3 activates a pathway that disrupts microtubule dynamics forming abnormal, nonfunctioning mitotic spindles, thus preventing cellular division. In this study, we investigated how As2O3 induces apoptosis by causing microtubule dysfunction.
Cultured NB4 cells were treated with As2O3, paclitaxel, and vincristine. Flow cytometric analysis was then performed. An MTT assay was used to determine drug-mediated cytotoxicity. For tubulin polymerization assay, each polymerized or soluble tubulin was measured. Microtubule assembly-disassembly was measured using a tubulin polymerization kit. Cellular microtubules were also observed with fluorescence microscopy.
As2O3 treatment disrupted tubulin assembly resulting in dysfunctional microtubules that cause death in APL cells. As2O3 markedly enhanced the amount of depolymerized microtubules. The number of microtubule posttranslational modifications on an individual tubulin decreased with As2O3 concentration. Immunocytochemistry revealed changes in the cellular microtubule network and formation of polymerized microtubules in As2O3-treated cells.
The microtubules alterations found with As2O3 treatment suggest that As2O3 increases the depolymerized forms of tubulin in cells and that this is potentially due to arsenite's negative effects on spindle dynamics.
Keywords Acute promyelocytic leukemia, Arsenic trioxide, Tubulin, Apoptosis, Antimitotic agents
Korean J Hematol 2012; 47(2): 105-112
Published online June 26, 2012 https://doi.org/10.5045/kjh.2012.47.2.105
Copyright © The Korean Society of Hematology.
Jin Ho Baek1,#, Chang Hoon Moon2,#, Seung Joo Cha2, Hee Soon Lee2, Eui-Kyu Noh1,2, Hawk Kim1,2, Jong-Ho Won3, and Young Joo Min1,2*
1Division of Hematology and Oncology, Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea.
2Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea.
3Division of Hematology-Oncology, Soonchunhyang University College of Medicine, Seoul, Korea.
Correspondence to:Correspondence to Young Joo Min, M.D., Ph.D. Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, 290-3, Jeonha-dong, Dong-gu, Ulsan 682-714, Korea. Tel: +82-52-250-8832, Fax: +82-52-250-8520, yjmin@uuh.ulsan.kr
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Arsenic trioxide (As2O3) is a well-known and effective treatment that can result in clinical remission for patients diagnosed with acute promyelocytic leukemia (APL). The biologic efficacy of As2O3 in APL and solid tumor cells has been explained through its actions on anti-proliferation, anti-angiogenesis, and apoptotic signaling pathways. We theorize that As2O3 activates a pathway that disrupts microtubule dynamics forming abnormal, nonfunctioning mitotic spindles, thus preventing cellular division. In this study, we investigated how As2O3 induces apoptosis by causing microtubule dysfunction.
Cultured NB4 cells were treated with As2O3, paclitaxel, and vincristine. Flow cytometric analysis was then performed. An MTT assay was used to determine drug-mediated cytotoxicity. For tubulin polymerization assay, each polymerized or soluble tubulin was measured. Microtubule assembly-disassembly was measured using a tubulin polymerization kit. Cellular microtubules were also observed with fluorescence microscopy.
As2O3 treatment disrupted tubulin assembly resulting in dysfunctional microtubules that cause death in APL cells. As2O3 markedly enhanced the amount of depolymerized microtubules. The number of microtubule posttranslational modifications on an individual tubulin decreased with As2O3 concentration. Immunocytochemistry revealed changes in the cellular microtubule network and formation of polymerized microtubules in As2O3-treated cells.
The microtubules alterations found with As2O3 treatment suggest that As2O3 increases the depolymerized forms of tubulin in cells and that this is potentially due to arsenite's negative effects on spindle dynamics.
Keywords: Acute promyelocytic leukemia, Arsenic trioxide, Tubulin, Apoptosis, Antimitotic agents
Induction of cytotoxicity and cell cycle arrest by As2O3.
Alterations in tubulin polymerization induced by As2O3.
Effects of As2O3 on microtubule stabilization. NB4 cells were treated with drugs or no drugs as a control, for 6 hours and 24 hours at the indicated concentration. Lysates were separated into polymerized (P) or soluble (S) fractions. The blots probed with anti-acetylated α-tubulin. The amount of acetylated α-tubulin in the P fraction of paclitaxel treatment was increased, compared with that of the control, but the proportion in P fraction of As2O3 treatment was decreased in a concentration-dependent manner. This result indicated that As2O3 interfered with important modifications necessary for the stability of microtubules. The intensity of each band was quantified by densitometry and the blots were stripped and reprobed with GAPDH-specific antibody as a loading control.
Effects of As2O3 on microtubule polymerization
Effects of As2O3 on the organization of cellular microtubule network. NB4 cells were treated with 5 µM As2O3, 40 nM paclitaxel, and 20 nM vincristine. Mock-treated cells were used as a control. After a 6-hour incubation, cells were harvested and fixed with formaldehyde. Cells were incubated with monoclonal anti-α-tubulin antibody at room temperature for 30 minutes. After incubation with FITC-conjugated secondary antibody, the cellular microtubules were imaged using an Olympus IX-81 fluorescence microscope. The normal organization of microtubule network was seen in control cells, increased density of polymerized microtubules were found in paclitaxel-treated cells, and a degraded microtubule network in cytoplasm was observed in As2O3-and vicristine-treated cells.
Table 1 . Cell cycle distribution of cells treated with arsenic trioxide and paclitaxel for 24 hours..
a)Percentage of cells in each phase of the cell cycle following 24 hours of drug treatment..
Gi-June Min, Byung-Sik Cho, Sung-Soo Park, Silvia Park, Young-Woo Jeon, Seung-Ah Yahng, Seung-Hawn Shin, Jae-Ho Yoon, Sung-Eun Lee, Ki-Seong Eom, Yoo-Jin Kim, Seok Lee, Chang-Ki Min, Seok-Goo Cho, Jong Wook Lee, Hee-Je Kim
Blood Res 2022; 57(3): 197-206Hae Jeong Song, Nam Su Lee, So Eun Kim, Chan Kyu Kim, Gyu Taeg Lee, Sung Gyu Park, Jong Ho Won, Seung Ho Baick, Dae Sik Hong, Hee Sook Park
Korean J Hematol 2002; 37(3): 218-222Yong Kyu You, Hee Jeong Cheong, Jong Ho Won, Sook Ja Kim, Sang Byung Bae, Chan Kyu Kim, Nam Su Lee, Kyu Taeg Lee, Sung Kyu Park, Dae Sik Hong, Hee Sook Park
Korean J Hematol 2005; 40(2): 93-100
Induction of cytotoxicity and cell cycle arrest by As2O3.
Alterations in tubulin polymerization induced by As2O3.
Effects of As2O3 on microtubule stabilization. NB4 cells were treated with drugs or no drugs as a control, for 6 hours and 24 hours at the indicated concentration. Lysates were separated into polymerized (P) or soluble (S) fractions. The blots probed with anti-acetylated α-tubulin. The amount of acetylated α-tubulin in the P fraction of paclitaxel treatment was increased, compared with that of the control, but the proportion in P fraction of As2O3 treatment was decreased in a concentration-dependent manner. This result indicated that As2O3 interfered with important modifications necessary for the stability of microtubules. The intensity of each band was quantified by densitometry and the blots were stripped and reprobed with GAPDH-specific antibody as a loading control.
|@|~(^,^)~|@|Effects of As2O3 on microtubule polymerization
Effects of As2O3 on the organization of cellular microtubule network. NB4 cells were treated with 5 µM As2O3, 40 nM paclitaxel, and 20 nM vincristine. Mock-treated cells were used as a control. After a 6-hour incubation, cells were harvested and fixed with formaldehyde. Cells were incubated with monoclonal anti-α-tubulin antibody at room temperature for 30 minutes. After incubation with FITC-conjugated secondary antibody, the cellular microtubules were imaged using an Olympus IX-81 fluorescence microscope. The normal organization of microtubule network was seen in control cells, increased density of polymerized microtubules were found in paclitaxel-treated cells, and a degraded microtubule network in cytoplasm was observed in As2O3-and vicristine-treated cells.