Original Article

Split Viewer

Blood Res 2015; 50(2):

Published online June 25, 2015

https://doi.org/10.5045/br.2015.50.2.87

© The Korean Society of Hematology

Bortezomib inhibits the survival and proliferation of bone marrow stromal cells

Ha-Yon Kim1, Ji-Young Moon2, Haewon Ryu2, Yoon-Seok Choi2, Ik-Chan Song2, Hyo-Jin Lee2, Hwan-Jung Yun2, Samyong Kim2, and Deog-Yeon Jo2*

1Department of Drug Activity, New Drug Development Center, Medical Innovation Foundation, Osong, Korea.

2Department of Internal Medicine, School of Medicine, Chungnam National University, Daejeon, Korea.

Correspondence to : Correspondence to Deog-Yeon Jo, M.D., Ph.D. Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University Hospital, 282, Munhwa-ro, Jung-gu, Daejeon 301-721, Korea. Tel: +82-42-280-7162, Fax: +82-42-257-5753, deogyeon@cnu.ac.kr

Received: March 1, 2015; Revised: May 24, 2015; Accepted: May 27, 2015

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background

Bortezomib is widely used for the treatment of multiple myeloma. Bone marrow stromal cells (BMSCs) endow myeloma cells with survival and growth advantages. However, the influence of bortezomib on BMSCs is not well elucidated. We examined the effects of bortezomib on the survival and growth of BMSCs in vitro.

Methods

The effects of bortezomib on the survival and proliferation of the BMSC MS-5 cell line and on BMSCs obtained from healthy individuals (N=4) and newly diagnosed myeloma patients (N=5) were investigated in vitro. Transmembrane cell migration was evaluated using the Transwell system. A short interfering RNA strategy was used to knock down the expression of chemokine (CXC motif) ligand 12 (CXCL12) mRNA. To examine the effects of bortezomib-exposed BMSCs on the migration and localization of myeloma cells, MS-5 monolayers were treated with bortezomib for 24 hr, washed, and then overlaid with human RPMI8226 myeloma cells.

Results

Bortezomib inhibited BMSC proliferation in a concentration-dependent manner, and induced cellular apoptosis. Bortezomib decreased CXCL12 production by BMSCs. Knockdown of CXCL12 mRNA in BMSCs revealed that CXCL12 served as an autocrine growth factor. Short-term bortezomib treatment of BMSC monolayers reduced the tendency of myeloma cells to locate to positions under the monolayers.

Conclusion

Bortezomib inhibits the survival and growth of BMSCs via downregulation of CXCL12, which may contribute to the clinical effects of this agent.

Keywords Bone marrow stromal cells, Bortezomib, CXCL12, Multiple myeloma, Proliferation, Survival

Article

Original Article

Blood Res 2015; 50(2): 87-96

Published online June 25, 2015 https://doi.org/10.5045/br.2015.50.2.87

Copyright © The Korean Society of Hematology.

Bortezomib inhibits the survival and proliferation of bone marrow stromal cells

Ha-Yon Kim1, Ji-Young Moon2, Haewon Ryu2, Yoon-Seok Choi2, Ik-Chan Song2, Hyo-Jin Lee2, Hwan-Jung Yun2, Samyong Kim2, and Deog-Yeon Jo2*

1Department of Drug Activity, New Drug Development Center, Medical Innovation Foundation, Osong, Korea.

2Department of Internal Medicine, School of Medicine, Chungnam National University, Daejeon, Korea.

Correspondence to: Correspondence to Deog-Yeon Jo, M.D., Ph.D. Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University Hospital, 282, Munhwa-ro, Jung-gu, Daejeon 301-721, Korea. Tel: +82-42-280-7162, Fax: +82-42-257-5753, deogyeon@cnu.ac.kr

Received: March 1, 2015; Revised: May 24, 2015; Accepted: May 27, 2015

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background

Bortezomib is widely used for the treatment of multiple myeloma. Bone marrow stromal cells (BMSCs) endow myeloma cells with survival and growth advantages. However, the influence of bortezomib on BMSCs is not well elucidated. We examined the effects of bortezomib on the survival and growth of BMSCs in vitro.

Methods

The effects of bortezomib on the survival and proliferation of the BMSC MS-5 cell line and on BMSCs obtained from healthy individuals (N=4) and newly diagnosed myeloma patients (N=5) were investigated in vitro. Transmembrane cell migration was evaluated using the Transwell system. A short interfering RNA strategy was used to knock down the expression of chemokine (CXC motif) ligand 12 (CXCL12) mRNA. To examine the effects of bortezomib-exposed BMSCs on the migration and localization of myeloma cells, MS-5 monolayers were treated with bortezomib for 24 hr, washed, and then overlaid with human RPMI8226 myeloma cells.

Results

Bortezomib inhibited BMSC proliferation in a concentration-dependent manner, and induced cellular apoptosis. Bortezomib decreased CXCL12 production by BMSCs. Knockdown of CXCL12 mRNA in BMSCs revealed that CXCL12 served as an autocrine growth factor. Short-term bortezomib treatment of BMSC monolayers reduced the tendency of myeloma cells to locate to positions under the monolayers.

Conclusion

Bortezomib inhibits the survival and growth of BMSCs via downregulation of CXCL12, which may contribute to the clinical effects of this agent.

Keywords: Bone marrow stromal cells, Bortezomib, CXCL12, Multiple myeloma, Proliferation, Survival

Fig 1.

Figure 1.

Bortezomib inhibits the proliferation of bone marrow stromal cells (BMSCs). MS-5 cells (A), BMSCs from 3 healthy individuals (B), and BMSCs from 5 myeloma patients (C) were incubated without or with bortezomib (5-500 nM) in 96-well plates in serum-free X-VIVO medium, and cell proliferation was measured by colorimetric assay. Data are the mean±SD of the relative proliferation indices from 3 independent experiments. (D) MS-5 cells were incubated with or without bortezomib for 24 hr prior to cell cycle analysis. a)P<0.05, as compared with the control (no bortezomib). (E) BMSCs from a normal individual, incubated for 24 hr, are shown.

Blood Research 2015; 50: 87-96https://doi.org/10.5045/br.2015.50.2.87

Fig 2.

Figure 2.

Bortezomib induces delayed apoptosis of bone marrow stromal cells (BMSCs). Cells were incubated in appropriate growth media, without or with bortezomib (5-500 nM), for 24-72 hr. Apoptosis was measured by flow cytometry after staining the cells for annexin V. (A) Representative flow cytometric profiles of bortezomib-treated U266 myeloma cells. (B) Representative flow cytometric profiles of bortezomib-treated MS-5 cells. (C) Apoptosis of MS-5 cells induced by bortezomib. Data are the mean±SD of 3 independent experiments. (D) Apoptosis of bortezomib-exposed BMSCs from 3 healthy individuals. Data are the mean±SD. (E) Apoptosis of bortezomib-exposed BMSCs from 5 myeloma patients. Data are the mean±SD. a)P<0.05, as compared with the control (no bortezomib).

Blood Research 2015; 50: 87-96https://doi.org/10.5045/br.2015.50.2.87

Fig 3.

Figure 3.

Knockdown of chemokine (CXC motif) ligand 12 (CXCL12) inhibits the spontaneous proliferation of bone marrow stromal cells (BMSCs). BMSCs from 3 normal individuals (A) and 3 multiple myeloma patients (B) were transfected with 25 nM CXCL12 siRNA or control siRNA for 24 hr, incubated for up to 72 hr, and subjected to cell proliferation assays. a)P<0.05, compared with the control siRNA.

Blood Research 2015; 50: 87-96https://doi.org/10.5045/br.2015.50.2.87

Fig 4.

Figure 4.

Bortezomib downregulates the expression and production of chemokine (CXC motif) ligand 12 (CXCL12) in MS-5 cells. MS-5 cells were incubated without or with bortezomib (5-500 nM) in X-VIVO medium for 24 hr prior to reverse transcription-PCR (A), real-time quantitative reverse transcription-PCR (B), and western blotting for CXCL12 (C). GAPDH, glyceraldehyde 3-phosphate dehydrogenase. (D) Concentrations of CXCL12α in 3-day MS-5 culture supernatants were measured by ELISA. Data are mean±SD of 3 independent experiments. a)P<0.05, compared with the control (no bortezomib).

Blood Research 2015; 50: 87-96https://doi.org/10.5045/br.2015.50.2.87

Fig 5.

Figure 5.

Bortezomib downregulates the expression and production of chemokine (CXC motif) ligand 12 (CXCL12) in bone marrow stromal cells (BMSCs). BMSCs from 3 normal individuals (A, B) and 3 multiple myeloma patients (C, D) were incubated without or with bortezomib (5-500 nM) in serum-free X-VIVO medium. After 24 hr, CXCL12 mRNA levels were measured using quantitative reverse transcription-PCR (A, C). After 72 hr, media concentrations of CXCL12α were measured by ELISA (B, D). a)P<0.05, compared with the control (no bortezomib). (E) Serum concentrations of CXCL12α before, and 3 days after, intravenous administration of bortezomib (1.3 mg/m2) to multiple myeloma patients (N=3). a)P<0.05. (F) Transmigration of RPMI8226 cells induced by 3-day bortezomib-treated or -non-treated MS-5 cell culture media. a)P<0.05, compared with the control (no bortezomib). (G) MS-5 cell monolayers were treated with (right panel) or without (left panel) 5 nM bortezomib for 24 hr. RPMI8226 cells were added to the MS-5 monolayers, and migration of cells beneath the monolayers (the dark phases) was studied by inverted microscopy 24 hr later. Short-term bortezomib treatment inhibited the localization of RPMI8226 cells under monolayers. Representative results are shown.

Blood Research 2015; 50: 87-96https://doi.org/10.5045/br.2015.50.2.87

Fig 6.

Figure 6.

Bortezomib and dexamethasone exert an additive downregulation of chemokine (CXC motif) ligand 12 (CXCL12) levels in MS-5 cells. (A) MS-5 cells were treated with dexamethasone for 24 hr prior to western blotting for CXCL12. (B) Concentrations of CXCL12α in 3-day MS-5 culture media were measured by ELISA. Data are the mean±SD of 3 independent experiments. a)P<0.05, compared with the control (no bortezomib). (C) MS-5 cells were treated with bortezomib (5 nM) and/or dexamethasone (Dexa; 0.1 µM) and CXCL12 mRNA was measured by quantitative reverse transcription-PCR. (D) MS-5 cells were incubated with bortezomib (5 nM) and/or dexamethasone (0.1 µM) in X-VIVO medium for 72 hr. Media concentrations of CXCL12α were measured by ELISA. a)P<0.05.

Blood Research 2015; 50: 87-96https://doi.org/10.5045/br.2015.50.2.87
Blood Res
Volume 59 2024

Stats or Metrics

Share this article on

  • line

Related articles in BR

Blood Research

pISSN 2287-979X
eISSN 2288-0011
qr-code Download