Blood Res 2021; 56(S1):
Published online April 30, 2021
https://doi.org/10.5045/br.2021.2021013
© The Korean Society of Hematology
Correspondence to : Kyung-Nam Koh, M.D., Ph.D.
Ho Joon Im, M.D., Ph.D.
Division of Pediatric Hematology/Oncology, Department of Pediatrics, Asan Medical Center Children’s Hospital, University of Ulsan College of Medicine, 88, Olympic-ro, 43-gil, Songpa-gu, Seoul 05505, Korea (K.N.K. and H.J.I.)
E-mail: K.N.K, pedkkn@amc.seoul.kr
H.J.I., hojim@amc.seoul.kr
*This study was supported by a grant from the Korea Disease Control and Prevention Agency (2019ER690301).
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Langerhans cell histiocytosis (LCH) is the most common histiocytic disorder caused by the clonal expansion of myeloid precursors that differentiate into CD1a+/CD207+ cells in the lesion. Advances in genomic sequencing techniques have improved our understanding of the pathophysiology of LCH. Activation of the mitogen-activated protein kinase (MAPK) pathway is a key molecular mechanism involved in the development of LCH. Recurrent BRAF mutations and MAP2K1 mutations are the major molecular alterations involved in the activation of the MAPK pathway. Recent studies have supported the “misguided myeloid differentiation model” of LCH, where the extent of disease is defined by the differentiation stage of the cell in which the activating somatic MAPK mutation occurs, suggesting LCH. Several studies have advocated the efficacy of targeted therapy using BRAF inhibitors with a high response rate, especially in patients with high-risk or refractory LCH. However, the optimal treatment scheme for children remains unclear. This review outlines recent advances in LCH, focusing on understanding the molecular pathophysiology, emerging targeted therapy options, and their clinical implications.
Keywords Langerhans cell histiocytosis, Therapeutics, Pathology
Langerhans cell histiocytosis (LCH) is a myeloproliferative disorder characterized by inflammatory lesions with the accumulation of CD1a+/CD207+ histiocytes, leading to the destruction of affected tissues [1, 2]. While LCH invades bones and skin commonly, it can involve any organ, including the liver, spleen, lungs, lymph nodes, central nervous system, and hematopoietic system. The clinical course varies greatly from a single bone lesion to a fatal multi-organ disease [3]. Although the precise origin of the pathological histiocytes in LCH is unclear, the current hypothesis is that these pathological cells are more likely to arise from dysregulated differentiation or the recruitment of bone marrow-derived precursor cells or yolk sac progenitors than from epidermal Langerhans cells [4, 5]. Recent advances in genomic sequencing have highlighted the activation of the mitogen-activated protein kinase (MAPK) pathway at critical stages in myeloid differentiation as an essential driver of LCH pathology [4]. In this review, we overview the recently growing understanding of LCH pathogenesis and a novel therapeutic option to optimize and personalize therapy through improved risk stratification, targeted therapy, and the assessment of therapy responses based on specific molecular features.
Diagnosis and clinical overview of LCH: Histiocytic disorders are diseases associated with cells of the mononuclear phagocyte system, which include hematopoietic cells with mononuclear morphology and phagocytic activity. LCH is the most common histiocytic disorder, and its clinical presentation varies from limited, indolent, and self-regressive to life-threatening disseminated disease. The diagnosis of LCH is based on clinical and radiological findings in combination with histopathological analysis, identifying the infiltration of tissue by histiocytes using the ultrastructural or immunophenotypic characteristics of Langerhans cells, which include the surface expression of CD207 (Langerin) and CD1a, as well as the detection of Birbeck granules using electron microscopy [6]. In routine clinical practice, the identification of Birbeck granules has recently been replaced with positive immunohistochemical staining for CD1a and CD207.
LCH as an immunoreactive disorder versus as a neoplastic disorder: In LCH lesions, pathological CD1a+CD207+ histiocytes are present in a small proportion, from less than 1% to more than 70% (median 8%), and are mixed with a variety of inflammatory cells, including eosinophils, macrophages, multinucleated giant cells, and lymphocytes (enriched with regulatory T cells) [7, 8]. In addition, these pathological histiocytes have a benign morphology and low mitotic activity. In this regard, LCH is considered an immune disorder in which normal cells proliferate in response to environmental stimuli.
The findings of Badalian-Very
Misguided myeloid differentiation model of LCH pathogenesis: The identification of the
Activation of MAPK pathway in LCH: The improvement of sequencing techniques that amplify the sequencing depth has enabled simultaneous studies of multiple target genomic regions per sample, which has led to the identification of the recurrent oncogenic somatic mutations in LCH that activate the MAPK pathway. The MAPK pathway comprising RAS/RAF/MEK/ERK, which regulates cell differentiation, proliferation, and apoptosis, plays a vital role in myeloid cell differentiation and maturation (Fig. 2). Previous reports have shown evidence of activation of the MAPK pathway in all the LCH samples [9, 11]. Mutations in the MAPK pathway proteins are associated with the differentiation of DC progenitors and inhibit the maturation of DCs. This role of activation of the MAPK pathway in myeloid cell differentiation and maturation may have implications regarding the origin and functional alterations of histiocytes in LCH [4].
Somatic mutations associated with LCH: Badalian-Very
Drawbacks of
Circulating cell-free
LCH has long been an enigma with respect to its origin and pathogenesis. Recent advances in molecular genomic analysis techniques have revealed the pathogenic molecular mechanism of LCH. The understanding of the origin and biology of LCH has increased rapidly in the last decade, leading to the introduction of promising targeted therapies for high-risk patients. However, high-risk patients still have suboptimal outcomes, and targeted therapy for such patients cannot eradicate the malignant clone and provide long-lasting remission after discontinuation. Future research should focus on improving outcomes and reducing permanent sequelae in high-risk LCH patients based on the recent understanding of LCH.
We thank Lee Changik, Park Yerang, and Lee Sangmin for their generous support for this research.
*This study was supported by a grant from the Korea Disease Control and Prevention Agency (2019ER690301).
No potential conflicts of interest relevant to this article were reported.
Blood Res 2021; 56(S1): S65-S69
Published online April 30, 2021 https://doi.org/10.5045/br.2021.2021013
Copyright © The Korean Society of Hematology.
Jin Kyung Suh, Sunghan Kang, Hyery Kim, Ho Joon Im, Kyung-Nam Koh
Division of Pediatric Hematology/Oncology, Department of Pediatrics, Asan Medical Center Children’s Hospital, University of Ulsan College of Medicine, Seoul, Korea
Correspondence to:Kyung-Nam Koh, M.D., Ph.D.
Ho Joon Im, M.D., Ph.D.
Division of Pediatric Hematology/Oncology, Department of Pediatrics, Asan Medical Center Children’s Hospital, University of Ulsan College of Medicine, 88, Olympic-ro, 43-gil, Songpa-gu, Seoul 05505, Korea (K.N.K. and H.J.I.)
E-mail: K.N.K, pedkkn@amc.seoul.kr
H.J.I., hojim@amc.seoul.kr
*This study was supported by a grant from the Korea Disease Control and Prevention Agency (2019ER690301).
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Langerhans cell histiocytosis (LCH) is the most common histiocytic disorder caused by the clonal expansion of myeloid precursors that differentiate into CD1a+/CD207+ cells in the lesion. Advances in genomic sequencing techniques have improved our understanding of the pathophysiology of LCH. Activation of the mitogen-activated protein kinase (MAPK) pathway is a key molecular mechanism involved in the development of LCH. Recurrent BRAF mutations and MAP2K1 mutations are the major molecular alterations involved in the activation of the MAPK pathway. Recent studies have supported the “misguided myeloid differentiation model” of LCH, where the extent of disease is defined by the differentiation stage of the cell in which the activating somatic MAPK mutation occurs, suggesting LCH. Several studies have advocated the efficacy of targeted therapy using BRAF inhibitors with a high response rate, especially in patients with high-risk or refractory LCH. However, the optimal treatment scheme for children remains unclear. This review outlines recent advances in LCH, focusing on understanding the molecular pathophysiology, emerging targeted therapy options, and their clinical implications.
Keywords: Langerhans cell histiocytosis, Therapeutics, Pathology
Langerhans cell histiocytosis (LCH) is a myeloproliferative disorder characterized by inflammatory lesions with the accumulation of CD1a+/CD207+ histiocytes, leading to the destruction of affected tissues [1, 2]. While LCH invades bones and skin commonly, it can involve any organ, including the liver, spleen, lungs, lymph nodes, central nervous system, and hematopoietic system. The clinical course varies greatly from a single bone lesion to a fatal multi-organ disease [3]. Although the precise origin of the pathological histiocytes in LCH is unclear, the current hypothesis is that these pathological cells are more likely to arise from dysregulated differentiation or the recruitment of bone marrow-derived precursor cells or yolk sac progenitors than from epidermal Langerhans cells [4, 5]. Recent advances in genomic sequencing have highlighted the activation of the mitogen-activated protein kinase (MAPK) pathway at critical stages in myeloid differentiation as an essential driver of LCH pathology [4]. In this review, we overview the recently growing understanding of LCH pathogenesis and a novel therapeutic option to optimize and personalize therapy through improved risk stratification, targeted therapy, and the assessment of therapy responses based on specific molecular features.
Diagnosis and clinical overview of LCH: Histiocytic disorders are diseases associated with cells of the mononuclear phagocyte system, which include hematopoietic cells with mononuclear morphology and phagocytic activity. LCH is the most common histiocytic disorder, and its clinical presentation varies from limited, indolent, and self-regressive to life-threatening disseminated disease. The diagnosis of LCH is based on clinical and radiological findings in combination with histopathological analysis, identifying the infiltration of tissue by histiocytes using the ultrastructural or immunophenotypic characteristics of Langerhans cells, which include the surface expression of CD207 (Langerin) and CD1a, as well as the detection of Birbeck granules using electron microscopy [6]. In routine clinical practice, the identification of Birbeck granules has recently been replaced with positive immunohistochemical staining for CD1a and CD207.
LCH as an immunoreactive disorder versus as a neoplastic disorder: In LCH lesions, pathological CD1a+CD207+ histiocytes are present in a small proportion, from less than 1% to more than 70% (median 8%), and are mixed with a variety of inflammatory cells, including eosinophils, macrophages, multinucleated giant cells, and lymphocytes (enriched with regulatory T cells) [7, 8]. In addition, these pathological histiocytes have a benign morphology and low mitotic activity. In this regard, LCH is considered an immune disorder in which normal cells proliferate in response to environmental stimuli.
The findings of Badalian-Very
Misguided myeloid differentiation model of LCH pathogenesis: The identification of the
Activation of MAPK pathway in LCH: The improvement of sequencing techniques that amplify the sequencing depth has enabled simultaneous studies of multiple target genomic regions per sample, which has led to the identification of the recurrent oncogenic somatic mutations in LCH that activate the MAPK pathway. The MAPK pathway comprising RAS/RAF/MEK/ERK, which regulates cell differentiation, proliferation, and apoptosis, plays a vital role in myeloid cell differentiation and maturation (Fig. 2). Previous reports have shown evidence of activation of the MAPK pathway in all the LCH samples [9, 11]. Mutations in the MAPK pathway proteins are associated with the differentiation of DC progenitors and inhibit the maturation of DCs. This role of activation of the MAPK pathway in myeloid cell differentiation and maturation may have implications regarding the origin and functional alterations of histiocytes in LCH [4].
Somatic mutations associated with LCH: Badalian-Very
Drawbacks of
Circulating cell-free
LCH has long been an enigma with respect to its origin and pathogenesis. Recent advances in molecular genomic analysis techniques have revealed the pathogenic molecular mechanism of LCH. The understanding of the origin and biology of LCH has increased rapidly in the last decade, leading to the introduction of promising targeted therapies for high-risk patients. However, high-risk patients still have suboptimal outcomes, and targeted therapy for such patients cannot eradicate the malignant clone and provide long-lasting remission after discontinuation. Future research should focus on improving outcomes and reducing permanent sequelae in high-risk LCH patients based on the recent understanding of LCH.
We thank Lee Changik, Park Yerang, and Lee Sangmin for their generous support for this research.
*This study was supported by a grant from the Korea Disease Control and Prevention Agency (2019ER690301).
No potential conflicts of interest relevant to this article were reported.
Kyung‑Nam Koh, Su Hyun Yoon, Sung Han Kang, Hyery Kim and Ho Joon Im
Blood Res 2024; 59():