Korean J Hematol 2012; 47(1):
Published online March 31, 2012
https://doi.org/10.5045/kjh.2012.47.1.17
© The Korean Society of Hematology
1Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Korea.
2Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea.
3Vaxcell-Bio Therapeutics, Hwasun, Korea.
Correspondence to : Correspondence to Je-Jung Lee, M.D., Ph.D. Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, 322, Seoyangro, Hwasun 519-763, Korea. Tel: +82-61-379-7638, Fax: +82-61-379-7626, drjejung@chonnam.ac.kr
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Cellular therapy with dendritic cells (DCs) is emerging as a useful immunotherapeutic tool to treat multiple myeloma (MM). DC-based idiotype vaccination was recently suggested to induce idiotype-specific immune responses in MM patients. However, the clinical results so far have been largely disappointing, and the clinical effectiveness of such vaccinations in MM still needs to be demonstrated. DC-based therapies against MM may need to be boosted with other sources of tumor-associated antigens, and potent DCs should be recruited to increase the effectiveness of treatment. DCs with both high migratory capacity and high cytokine production are very important for effective DC-based cancer vaccination in order to induce high numbers of Th1-type CD4+ T cells and CD8+ cytotoxic T lymphocytes. The tumor microenvironment is also important in the regulation of tumor cell growth, proliferation, and the development of therapeutic resistance after treatment. In this review, we discuss how the efficacy of DC vaccination in MM can be improved. In addition, novel treatment strategies that target not only myeloma cells but also the tumor microenvironment are urgently needed to improve treatment outcomes.
Keywords Cellular immunotherapy, Dendritic cell, Multiple myeloma, Cytotoxic T lymphocyte, Immune response
Multiple myeloma (MM) is a clonal B cell malignant disease that is characterized by the proliferation of plasma cells in the bone marrow (BM) in association with monoclonal protein in the serum and/or urine, immune paresis, skeletal destruction, renal dysfunction, anemia, hypercalcemia, and lytic bone diseases [1]. Although the introduction of high-dose therapy with hematopoietic stem cell transplantation (HSCT) and the development of novel molecular targeting agents has resulted in a marked improvement in overall survival, MM still remains incurable [2]. Alternative approaches are clearly needed to prolong both disease-free and overall survival of patients with MM. To prolong the survival of patients with MM who are undergoing allogeneic HSCT, donor lymphocyte infusion can be used successfully as a salvage therapy, based on the graft-versus-myeloma effect in some cases of MM that relapse after allogeneic HSCT [3, 4]. A clinically significant immune-mediated allogeneic graft-versus-myeloma effect provides the framework for development of immune-based therapeutic options that use antigen-presenting cells (APCs), such as dendritic cells (DCs), in MM [4, 5].
DCs are the most potent APCs for initiating cellular immune responses through the stimulation of naive T cells. Because of their ability to stimulate T cells, DCs act as links between innate immunity and adaptive immunity in antitumor immune responses [6]. These DCs play a central role in various immunotherapy protocols through generation of cytotoxic T lymphocytes (CTLs) [7]. DC-based vaccines have become the most attractive tool for cancer immunotherapy and have been used in the treatment of more than 20 malignancies [8]. In MM, cellular immunotherapy using DCs is emerging as a useful immunotherapeutic modality [8]. Since tumor antigen-loaded DCs are expected to be able to stimulate tumor-specific CTLs and to overcome T cell tolerance in patients with tumors, the development of DC vaccines that can consistently eliminate minimal residual disease remains an important goal in the field of tumor immunology [9].
Usually, hematologic malignancies elicit weak immunogenic responses that are generally incapable of mediating tumor destruction. They are able to escape immune surveillance via down-regulation of costimulatory molecules and major histocompatibility complex (MHC) molecules as well as the production of immunosuppressive cytokines by tumor cells or by activation of suppressor cells such as regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) [10]. In particular, MM induces immune paresis [11]. Patients with MM have DCs that are functionally defective, evidenced by the decreased number of circulating DCs and impaired T cell stimulatory capacity [12, 13]. Myeloma cells can produce immuno-inhibitory cytokines, such as interleukin (IL)-10, transforming growth factor beta (TGF-β), vascular endothelial growth factor (VEGF), and IL-6, which play major roles in the pathogenesis of MM, aberrant functions of DCs, and impaired development of effector functions in tumor-specific lymphocytes [12, 13]. In addition, the survival and proliferation of tumor cells are partially facilitated by impaired endogenous immune surveillance against tumor antigens, including the abrogation of DC function, by constitutive activation of the signal transducer and activator of transcription 3 (STAT3) [14]. Impairment in both humoral and cellular immunity in MM is associated with impaired B cell differentiation and antibody responses [12]; reduced T cell numbers, specifically CD4+ T cells and abnormal Th1/Th2 CD4+ T cell ratios [15]; impaired CTL responses [16]; and dysfunction of natural killer (NK) cells and natural killer T (NKT) cells [17, 18]. In addition, the recruitment and expansion of CD4+CD25+Tregs in MM patients in the suppression of tumor immunity has been reported [19, 20]. More recently, the discovery of MDSCs revealed these cells to be potent suppressors of tumor immunity and, therefore, a significant impediment to cancer immunotherapy [21]. According to a recent report, the proportion of CD14+HLA-DR-/low MDSCs and CD4+FOXP3+ Tregs cells was increased in MM patients at diagnosis and inhibited proliferation of both CD4+ and CD8+ T cells [22].
Usually,
Immunoglobulin idiotype (Id) is a tumor-specific antigen that is produced by each B cell tumor clone. Id protein has been used for immunotherapy in patients with MM [23, 24]. Id vaccination could induce responses by both antibodies and Id-specific T cells, including CD4+ and CD8+ T cells, through the presentation of Id protein on the surface of professional APCs. Id-specific CTL lines that kill autologous primary myeloma cells
A variety of myeloma-associated antigens that may induce immune responses from DC-based vaccines have been identified in MM patients. Many potential tumor-associated antigens (TAAs) in MM have been investigated, including polymorphic epithelial mucin (MUC1), human telomerase reverse transcriptase (hTERT), preferentially expressed antigen of myeloma (PRAME), Sperm protein 17 (Sp17), Wilms' tumor-I (WTI), Dickkopf-1 (DKK-1), and members of the cancer germ-like family (MAGE, GAGE, BAGE, LAGE, and NY-ESO-1). MUC1 was expressed in all MM cell lines and primary myeloma cells. MUC1-specific CTLs that were induced
Although a single TAA can induce antitumor immune response against MM, tumors may escape immune recognition via down-regulation of specific antigen expression. In contrast, DCs loaded with antigens derived from whole tumor cells can improve the antitumor response, limiting the risk of immunological escape. Numerous reports have described these alternative approaches, such as DCs pulsed with myeloma lysates [44, 45], DCs pulsed with myeloma apoptotic bodies [46, 47], DCs transfected with myeloma-derived RNA [37], DCs pulsed with myeloma-derived heat shock protein (HSP) gp96 [48, 49], and DC-myeloma cell hybrids [50, 51]. These techniques have the advantage of allowing the presentation of multiple epitopes to MHC on DCs, therefore inducing polyclonal T cell responses from many potentially unknown TAAs and reducing the probability of immune escape by a single TAA. DCs loaded with myeloma cell lysates induced much more potent cytotoxicity in autologous plasma cells than Id protein-pulsed DCs did, suggesting the superiority of the myeloma cell as a source of a tumor antigen [45]. The apoptotic bodies derived from myeloma cells have also been used as tumor antigens for loading onto DCs. Interestingly, these apoptotic bodies were shown to be more effective than cell lysates at inducing CTLs against autologous myeloma cells [52]. HSPs are a class of functionally related proteins whose expression is increased when cells are exposed to elevated temperatures or other stresses. Tumor-derived HSPs, such as HSP70 and gp96, are immunogenic, potent stimulators of tumor-specific CTLs. The specific CTLs that were stimulated by myeloma-derived gp96-loaded DCs were able to lyse myeloma cells but not normal blood cells in a MHC class I-restricted manner [48, 49]. Moreover, fusion of autologous DCs with patient-derived tumors stimulated both helper and cytotoxic T cell responses through the presentation of internalized and newly synthesized antigens [51]. In mouse MM models, vaccination with DCs fused with either plasmacytoma cells or tumor cells resulted in eradication of tumors and protective immunity against subsequent tumor challenge [50]. In general, the production of DC vaccines using whole tumor antigens has become a promising tool for immunotherapy against MM.
Trial protocols and responses are summarized in Table 1. Clinical trials of DC-based vaccines for MM have been restricted until now. Almost all of these clinical trials used Id-pulsed DCs alone or in combination with adjuvants such as cytokines or KLH. Recently, a phase I study was undertaken, in which patients with MM were vaccinated with an autologous DC/tumor cell fusion in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF) administration [53]. A commercial product is currently being tested in a phase III trial (Mylovenge™, Dendreon Corp., Seattle, WA, USA). Mylovenge (APC8020) is conducted by pulsing autologous DCs with the patient's Id. A recent report describing this commercial product showed the long-term survival of those receiving the vaccine in comparison with the survival of all other patients with MM who underwent autologous HSCT [54].
The goal of DC-based vaccines in cancer immunotherapy is to induce the expansion of tumor-specific T cells and establish immune responses. Cellular immunotherapy using DC-based vaccines have been used as therapeutic agents in MM patients; however, few patients experienced tumor regression, and the most common responses to current DC vaccines are only antigen-specific immune responses. This is required in a new strategy for the treatment of cancer, in which the intrinsic abilities of the immune system response to the DC-based vaccine has been modified to enhance the efficacy of vaccination. In particular, DCs in MM patients are a target of tumor-associated suppressive factors from the microenvironment, since
The initial success of DC-based vaccines involving immature or partially-mature "first-generation" DCs has been reported [55, 56]. The first therapeutic DC-based cancer vaccine against prostate cancer (Sipuleucel-T/Provenge) received US FDA approval and demonstrated the ability of the vaccine to prolong overall survival in patients with highly advanced cancer [57]. However, such DCs express suboptimal levels of costimulatory molecules and constitute weaker immunogens than subsequently implemented mature DCs, the "second generation" of clinically applied standard DCs (sDCs). sDC vaccines induced by cytokine cocktails containing IL-1β/TNF-α/IL-6/prostaglandin E2 (PGE2) have been developed [58]. Such DCs are fully mature and exhibit increased expression costimulatory molecules and CCR7 and high migratory responsiveness to lymph node-associated chemokines; they have been widely tested in clinical trials. However, to date, sDC vaccines still have limitations, including the mediation of Th2 polarization, promotion of secretion of the immunosuppressive cytokine IL-10 from DCs, inability to induce the Th1-type response (because PGE2 abolishes the secretion of IL-12p70), and high activity of such DCs in activating Tregs [59, 60]. In addition, the induction of antitumor CTL responses by DC-based vaccines benefits from high expression of costimulatory molecules, CCR7 responsiveness, and migration in response to lymphoid chemokines from mature DCs [61]. At the same time, high IL-12p70 secretion has been shown to dramatically enhance the ability of DCs to induce tumor-specific Th1 cells and CTLs and to promote tumor rejection in therapeutic mouse models [62]. Unfortunately, both first- and second-generation DCs were unable to induce effective CTL responses. Therefore, several investigators, including our group, have tried to develop potent DCs that possess all required features for inducing effective tumor-specific immune responses. We demonstrated the feasibility of inducing mature but "nonexhausted" DCs, by exposing immature DCs to type 1 and type 2 interferons (IFNs) combined with TNFα or Toll-like receptor (TLR) ligands. In particular, α-type 1-polarized DCs (αDC1s) that have been induced to mature using an αDC1-inducing cytokine cocktail containing IL-1β, TNF-α, IFN-α, IFN-γ, and polyinosinic:polycytidylic acid [poly(I:C)] have been developed to generate strong functional CTLs in several diseases and are on average 20-fold higher than sDCs [63, 64]. The resulting αDC1s showed high expression of several costimulatory molecules or high secretion of IL-12p70, improving the induction of tumor-specific and functional CTLs in comparison with that in sDCs
The other strategy to induce potent DCs from patients with MM was the use of helper cells to promote type 1-polarization of DCs. NK cells rapidly migrate to sites of infection and control the immune response in viral infections. Indeed, it has been demonstrated that NK cells play a major immunoregulatory role in the development of protective T cell-mediated immunity against intracellular pathogens and cancers [68]. Such helper activity of NK cells is at least partially mediated by the functional modulation of DCs. This phenomenon depended on the production of IFN-γ and TNF-α by activated NK cells [68] and was associated with enhanced tumor antigen cross-presentation and the induction of Th1 and CTL responses [69-71]. Recent data from our laboratory and other groups has demonstrated that such NK-DC interactions promote the subsequent induction of tumor-specific responses in CD4+ and CD8+ T cells, allowing NK cells to act as helper cells in the development of type-1 polarized DCs in responses against cancer [69-71]. Resting NK cells that are activated in the presence of TLR agonists, IL-2, and IFN-α can induce potent DCs with enhanced IL-12p70 production
We also found that the selected combinations of TLR agonists synergistically triggered a Th1-polarizing capacity through production of high amounts of IL-12p70 [72]. However, the major limitation of this combination was the decreased ability of these cells to migrate into lymph nodes compared to that of conventional DCs. When DCs are activated by individual TLR agonists, such as LPS or poly(I:C), or by a combination of 2 TLR agonists, all cells mature and produce high levels of bioactive IL-12p70 in early phase of maturation and after subsequent stimulation with T cell-related DC activating signal CD40L. In addition, the phenotyes of these matured DCs were markedly enhanced when a combination of type I and type II IFN was added. These combinations of stimuli also regulated the expression of CD38 and CD74, markers related to the full activation of DCs [73, 74]. We demonstrated that at the optimal concentration used to stimulate DCs, the combination of 2 TLR agonists with type I and II IFNs can be used to generate fully mature DCs that have high migratory capacity and can maintain IL-12p70-producing capacity. The regulation of CD38 and CD74 in DCs could in turn enhance the migratory activity of DCs in the presence of a combination of 2 TLR agonists and IFNs [75].
Ursolic acid (URC) is isolated from
The clinical responses of DC vaccines using Id-pulsed DCs have been disappointing. The use of TAAs can induce more significant immune responses than Id. Although a single TAA can induce antitumor immune responses against MM, tumors may escape immune recognition via down-regulation of specific antigen expression. In addition, only a small number of tumor samples from MM patients showed a similar level of TAA expression, limiting the usefulness of TAAs in MM. Therefore, to overcome the effects of TAA-based immunotherapy, our group has attempted to use other tumor antigens that improve the cross-presentation of the DC vaccine in patients with MM.
The selected antigen should possess the best characteristics for induction of cross-presentation and should be tumor specific and easily available, but should not induce immune suppression. Whole tumor antigens, including myeloma cell lysates and apoptotic bodies from myeloma cells, are the best tumor antigens and have been selected by many investigators. In practical terms, a number of patients with MM have less than 50% myeloma cells in the BM at diagnosis or during progression of the disease. When mononuclear cells from the BM are used as a source of tumor antigens, contamination with normal cells, especially lymphocytes, may occur. Thus, it is necessary to use purified, optimized myeloma cells, if possible, as a source of tumor antigens for the generation of myeloma-specific CTLs stimulated by DCs [44]. We have shown that the function of DCs was affected by the concentration of myeloma cell lysates (i.e., higher concentrations of lysates suppressed T cell stimulatory capacities) [44]. CTLs that were generated by purified, optimized myeloma cell lysates pulsed with DCs demonstrated much stronger cytotoxicity against autologous plasma cells. These findings indicate that it is important to optimize the concentration of myeloma cell lysates that were loaded onto DCs to potentiate their function.
The use of whole tumor cells instead of single antigens may enhance antitumor effects, but may also target multiple tumor variants and counteract tumor immune evasion. However, it is impractical to obtain sufficient amounts of purified autologous myeloma cells for tumor antigens in the clinical setting of MM. As an alternative source of tumor-relevant antigens, allogeneic tumor cells or established cancer cell lines have been used to overcome this limitation in various tumors [46, 47]. In clinical practice, allogeneic myeloma cell lines may be an effective source of universal tumor antigens that could be used to load DCs for the generation of myeloma-specific CTLs in MM patients. Tumor antigens derived from DC-loaded irradiated allogeneic myeloma cells could generate myeloma-specific CTLs against autologous myeloma cells in patients with MM [46, 71]. The success of using an allogeneic myeloma cell line as tumor antigens led to the possibility that allogeneic myeloma cells could also be used as a viable source of tumor antigens in the context of appropriate major MHC alleles to autologous CTLs. We investigated the possibility of using autologous DCs loaded with an apoptotic allogeneic matched monoclonal immunoglobulin subtype of myeloma and showed that the CTL generated by these tumor antigen-loaded DCs could generate myeloma-specific CTLs against autologous myeloma cells in MM patients [47]. These findings suggested that allogeneic myeloma cell lines and allogeneic matched monoclonal immunoglobulin subtype of myeloma were effective tumor antigens capable of inducing functional CTLs against patients' own myeloma cells.
The suppressive effects of tumor cells during DC generation have been explained previously by the ability of the tumor microenvironment to suppress DC differentiation [78]. This suppression is due to the activation of STAT3 and the production of immunosuppressive factors. These factors can influence STAT3 and extracellular signal-regulated kinase (ERK) phosphorylation, resulting in hyperactivation of STAT3 and ERK, which may be responsible for defective DC differentiation [79]. In addition to generate potent and specific tumor antigen-loaded DCs for vaccination, alternative methods have attempted to restore defective DC function and to enhance DC function in MM. The immune-mediated antitumor effects of DCs are enhanced by inhibition of the janus-activated kinase 2 (JAK2)/STAT3 pathway [80], inhibition of p38 or activation of the MEK/ERK or mitogen-activated protein kinase (MAPK) pathways, and neutralization of IL-6 [81]. Recently, we found that when MM-specific DCs were generated by loading tumor lysates from myeloma cells collected at diagnosis or during the relapsed/progressive state, these DCs showed lower phenotypic maturation, less T cell stimulatory capacity, less CTL activity, and highly abnormal IL-6 and IL-12 secretion compared to the secretion by unloaded DCs. Moreover, the levels of VEGF, phospho-STAT3, and phospho-ERK1/2 in DCs were significantly higher than in unloaded DCs. After neutralization of VEGF activity, DC functions, signal transduction, and cytokine production returned to normal. Therefore, inhibitory factors and abnormal signaling pathways during maturation with tumor antigens in DCs may be responsible for the defective activity of DCs in MM, and these abnormalities may be overcome by neutralizing the signaling that would lead to a suppressed immune response [82]. Currently, we are working to develop strategies that recover dysfunction of DCs caused from loading tumor antigens through treatment of myeloma cells with a combination of the selective JAK/STAT3 inhibitor JSI-124 and proteasome inhibitor bortezomib. We observed that production of inhibitory cytokines, such as IL-10, IL-23, and especially IL-6, which is known as the main plasma cell growth factor that induces DC dysfunction in MM patients, was down-regulated in DCs loaded with JSI-124- and bortezomib-induced dying myeloma tumor cells. Furthermore, phospho-STAT3 was also down-regulated in these DCs. Consistent with their recovery functions, these DCs displayed a superior ability to induce myeloma-specific responses of CTLs (unpublished data). We found that pretreatment of myeloma cells with a combination of JSI-124 and bortezomib recovered DC dysfunction caused by loading of dying myeloma cells through the up-regulation of Hsp90 and down-regulation of STAT3 phosphorylation and inhibitory cytokine production. These DCs could generate potent myeloma-specific CTLs.
The efficacies of 3 features, namely, fully mature status, high migratory responsiveness to lymph-node associated chemokines (CCR7 ligands), and ability to produce high levels of IL-12p70, determine whether DCs are appropriate carriers for anticancer vaccines [63]. However, although α-type 1-polarized DCs possess all of the above features, the expression of CCR7 and the migration of DCs in response to the CCR7 ligand (CCL19 and CCL21) were lower in these DCs than in conventional sDCs [63, 64] due to the lack of PGE2, a critical component of the standard cytokine cocktail that is important for the expression of CCR7 and the responsiveness of DCs to CCR7 ligands [83]. We also investigated whether migration could be enhanced by increasing the expression of CCR7 or the migration of DCs and found that after stimulation of monocyte-derived DCs by CCL21 2 hr before the end of maturation by α-type 1-polarized cytokine cocktail, the migration of harvested DCs through transwells was faster than that of unstimulated DCs. Interestingly, phenotypes and cytokine production levels were similar in both DCs. Furthermore, we also found that CCL21-treated DCs could induce the ability to stimulate tumor-specific responses of CTLs by the enhancement of CXCL10 (IP-10) secretion (unpublished data). We are now investigating this phenomenon to generate monocyte-derived DCs in MM patients and
Therapeutic DC vaccines need to be highly effective at inducing the expansion of tumor-specific T cells and need to avoid interaction with and induction of immunosuppressor cells, such as Tregs and MDSCs. Recently, type 1-polarized DCs were shown to suppress the secretion of CCL22 (Tregand Th2-type attracting chemokines), enhance the secretion of CCL5 and CXCL10 (Th1- and effector T cell-attracting chemokines), and suppress the induction of Tregs compared to sDCs [84]. In addition, to enhance the antitumor effects of DC-based vaccines in preclinical
We are developing a mouse myeloma combination therapy model, in which the myeloma tumor-bearing mice were vaccinated with a combination of DCs and lenalidomide. Lenalidomide is a thalidomide analog that is more potent and has less adverse effects [11]. Lenalidomide can induce apoptosis; inhibit the production of cytokines (IL-6, VEGF, and TNF-α) in BM; and stimulate T cell and NK cell proliferation, cytotoxicity, and cytokine (IL-2, IFN-γ) production [11]. In addition, lenalidomide can inhibit the frequency and function of Tregs, resulting in inhibition of Treg expansion and forkehad box P3 (FOXP3) expression in cancer patients [87]. Interestingly, this drug can also induce the activation of APC function, resulting in upregulation of CD40, CD80, and CD86, in chronic lymphocytic leukemia [88]. Therefore, lenalidomide could be used as an immunomodulatory drug in order to enhance immune responses against cancer. Our
Despite their limitations, recent clinical studies have suggested that DC-based vaccinations may be potential therapies that induce tumor responses and prolong the survival of patients with MM. Further investigations are needed to increase DC-based potency and improve immune responses, and these investigations should focus on the identification of alternative tumor antigens uniquely or specifically expressed on myeloma cells, recovery or restoration of the dysfunction of DCs in MM patients, induction of T cells with desirable effector functions rather than regulatory functions, migration into lymph nodes to stimulate T cells, and clarification of the ability of tumor-specific CTLs to recognize and kill tumor cells. We expect that type 1-polarized DCs can be developed to generate strong functional myeloma-specific CTLs. Allogeneic myeloma cell lines or allogeneic myeloma cells may be an effective source of universal tumor antigens that could be used to load to DCs for the successful generation of myeloma-specific CTLs. Eventually, combination therapy, in which a DC vaccine is combined with either alternative therapy, including chemotherapy, radiation therapy, molecular target therapy, or other immunotherapy (adoptive T cell therapy, NK cell therapy, etc.), or with an adjuvant, will provide vigorous and maintained immune responses with improved clinical efficacy.
Key points to improve DC vaccination in cancer patients. Abbreviations: CTL, cytotoxic T lymphocyte; DCs, dendritic cells; TA, tumor antigen; LNs, lymph nodes; Treg, regulatory T cell; MDSC, myeloid-derived suppressor cell.
Table 1 Summary of clinical studies using DC-based vaccinations.
Abbreviations: DC, dendritic cell; TA, tumor antigen; imDC, immature DC; Mo-DC, monocyte-derived DC; Id, idiotype; mMo-DC, mature Mo-DC; KLH, keyhole limpet hemocyanin; CTL, cytotoxic T lymphocyte; PD, progressive disease; PR, partial response; SD, stable disease; CR, complete response.
Korean J Hematol 2012; 47(1): 17-27
Published online March 31, 2012 https://doi.org/10.5045/kjh.2012.47.1.17
Copyright © The Korean Society of Hematology.
Thanh-Nhan Nguyen-Pham1,2, Youn-Kyung Lee1,3, Hyun-Ju Lee1, Mi-Hyun Kim1,3, Deok-Hwan Yang1,2, Hyeoung-Joon Kim2, and Je-Jung Lee1,2,3*
1Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Korea.
2Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea.
3Vaxcell-Bio Therapeutics, Hwasun, Korea.
Correspondence to: Correspondence to Je-Jung Lee, M.D., Ph.D. Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, 322, Seoyangro, Hwasun 519-763, Korea. Tel: +82-61-379-7638, Fax: +82-61-379-7626, drjejung@chonnam.ac.kr
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Cellular therapy with dendritic cells (DCs) is emerging as a useful immunotherapeutic tool to treat multiple myeloma (MM). DC-based idiotype vaccination was recently suggested to induce idiotype-specific immune responses in MM patients. However, the clinical results so far have been largely disappointing, and the clinical effectiveness of such vaccinations in MM still needs to be demonstrated. DC-based therapies against MM may need to be boosted with other sources of tumor-associated antigens, and potent DCs should be recruited to increase the effectiveness of treatment. DCs with both high migratory capacity and high cytokine production are very important for effective DC-based cancer vaccination in order to induce high numbers of Th1-type CD4+ T cells and CD8+ cytotoxic T lymphocytes. The tumor microenvironment is also important in the regulation of tumor cell growth, proliferation, and the development of therapeutic resistance after treatment. In this review, we discuss how the efficacy of DC vaccination in MM can be improved. In addition, novel treatment strategies that target not only myeloma cells but also the tumor microenvironment are urgently needed to improve treatment outcomes.
Keywords: Cellular immunotherapy, Dendritic cell, Multiple myeloma, Cytotoxic T lymphocyte, Immune response
Multiple myeloma (MM) is a clonal B cell malignant disease that is characterized by the proliferation of plasma cells in the bone marrow (BM) in association with monoclonal protein in the serum and/or urine, immune paresis, skeletal destruction, renal dysfunction, anemia, hypercalcemia, and lytic bone diseases [1]. Although the introduction of high-dose therapy with hematopoietic stem cell transplantation (HSCT) and the development of novel molecular targeting agents has resulted in a marked improvement in overall survival, MM still remains incurable [2]. Alternative approaches are clearly needed to prolong both disease-free and overall survival of patients with MM. To prolong the survival of patients with MM who are undergoing allogeneic HSCT, donor lymphocyte infusion can be used successfully as a salvage therapy, based on the graft-versus-myeloma effect in some cases of MM that relapse after allogeneic HSCT [3, 4]. A clinically significant immune-mediated allogeneic graft-versus-myeloma effect provides the framework for development of immune-based therapeutic options that use antigen-presenting cells (APCs), such as dendritic cells (DCs), in MM [4, 5].
DCs are the most potent APCs for initiating cellular immune responses through the stimulation of naive T cells. Because of their ability to stimulate T cells, DCs act as links between innate immunity and adaptive immunity in antitumor immune responses [6]. These DCs play a central role in various immunotherapy protocols through generation of cytotoxic T lymphocytes (CTLs) [7]. DC-based vaccines have become the most attractive tool for cancer immunotherapy and have been used in the treatment of more than 20 malignancies [8]. In MM, cellular immunotherapy using DCs is emerging as a useful immunotherapeutic modality [8]. Since tumor antigen-loaded DCs are expected to be able to stimulate tumor-specific CTLs and to overcome T cell tolerance in patients with tumors, the development of DC vaccines that can consistently eliminate minimal residual disease remains an important goal in the field of tumor immunology [9].
Usually, hematologic malignancies elicit weak immunogenic responses that are generally incapable of mediating tumor destruction. They are able to escape immune surveillance via down-regulation of costimulatory molecules and major histocompatibility complex (MHC) molecules as well as the production of immunosuppressive cytokines by tumor cells or by activation of suppressor cells such as regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) [10]. In particular, MM induces immune paresis [11]. Patients with MM have DCs that are functionally defective, evidenced by the decreased number of circulating DCs and impaired T cell stimulatory capacity [12, 13]. Myeloma cells can produce immuno-inhibitory cytokines, such as interleukin (IL)-10, transforming growth factor beta (TGF-β), vascular endothelial growth factor (VEGF), and IL-6, which play major roles in the pathogenesis of MM, aberrant functions of DCs, and impaired development of effector functions in tumor-specific lymphocytes [12, 13]. In addition, the survival and proliferation of tumor cells are partially facilitated by impaired endogenous immune surveillance against tumor antigens, including the abrogation of DC function, by constitutive activation of the signal transducer and activator of transcription 3 (STAT3) [14]. Impairment in both humoral and cellular immunity in MM is associated with impaired B cell differentiation and antibody responses [12]; reduced T cell numbers, specifically CD4+ T cells and abnormal Th1/Th2 CD4+ T cell ratios [15]; impaired CTL responses [16]; and dysfunction of natural killer (NK) cells and natural killer T (NKT) cells [17, 18]. In addition, the recruitment and expansion of CD4+CD25+Tregs in MM patients in the suppression of tumor immunity has been reported [19, 20]. More recently, the discovery of MDSCs revealed these cells to be potent suppressors of tumor immunity and, therefore, a significant impediment to cancer immunotherapy [21]. According to a recent report, the proportion of CD14+HLA-DR-/low MDSCs and CD4+FOXP3+ Tregs cells was increased in MM patients at diagnosis and inhibited proliferation of both CD4+ and CD8+ T cells [22].
Usually,
Immunoglobulin idiotype (Id) is a tumor-specific antigen that is produced by each B cell tumor clone. Id protein has been used for immunotherapy in patients with MM [23, 24]. Id vaccination could induce responses by both antibodies and Id-specific T cells, including CD4+ and CD8+ T cells, through the presentation of Id protein on the surface of professional APCs. Id-specific CTL lines that kill autologous primary myeloma cells
A variety of myeloma-associated antigens that may induce immune responses from DC-based vaccines have been identified in MM patients. Many potential tumor-associated antigens (TAAs) in MM have been investigated, including polymorphic epithelial mucin (MUC1), human telomerase reverse transcriptase (hTERT), preferentially expressed antigen of myeloma (PRAME), Sperm protein 17 (Sp17), Wilms' tumor-I (WTI), Dickkopf-1 (DKK-1), and members of the cancer germ-like family (MAGE, GAGE, BAGE, LAGE, and NY-ESO-1). MUC1 was expressed in all MM cell lines and primary myeloma cells. MUC1-specific CTLs that were induced
Although a single TAA can induce antitumor immune response against MM, tumors may escape immune recognition via down-regulation of specific antigen expression. In contrast, DCs loaded with antigens derived from whole tumor cells can improve the antitumor response, limiting the risk of immunological escape. Numerous reports have described these alternative approaches, such as DCs pulsed with myeloma lysates [44, 45], DCs pulsed with myeloma apoptotic bodies [46, 47], DCs transfected with myeloma-derived RNA [37], DCs pulsed with myeloma-derived heat shock protein (HSP) gp96 [48, 49], and DC-myeloma cell hybrids [50, 51]. These techniques have the advantage of allowing the presentation of multiple epitopes to MHC on DCs, therefore inducing polyclonal T cell responses from many potentially unknown TAAs and reducing the probability of immune escape by a single TAA. DCs loaded with myeloma cell lysates induced much more potent cytotoxicity in autologous plasma cells than Id protein-pulsed DCs did, suggesting the superiority of the myeloma cell as a source of a tumor antigen [45]. The apoptotic bodies derived from myeloma cells have also been used as tumor antigens for loading onto DCs. Interestingly, these apoptotic bodies were shown to be more effective than cell lysates at inducing CTLs against autologous myeloma cells [52]. HSPs are a class of functionally related proteins whose expression is increased when cells are exposed to elevated temperatures or other stresses. Tumor-derived HSPs, such as HSP70 and gp96, are immunogenic, potent stimulators of tumor-specific CTLs. The specific CTLs that were stimulated by myeloma-derived gp96-loaded DCs were able to lyse myeloma cells but not normal blood cells in a MHC class I-restricted manner [48, 49]. Moreover, fusion of autologous DCs with patient-derived tumors stimulated both helper and cytotoxic T cell responses through the presentation of internalized and newly synthesized antigens [51]. In mouse MM models, vaccination with DCs fused with either plasmacytoma cells or tumor cells resulted in eradication of tumors and protective immunity against subsequent tumor challenge [50]. In general, the production of DC vaccines using whole tumor antigens has become a promising tool for immunotherapy against MM.
Trial protocols and responses are summarized in Table 1. Clinical trials of DC-based vaccines for MM have been restricted until now. Almost all of these clinical trials used Id-pulsed DCs alone or in combination with adjuvants such as cytokines or KLH. Recently, a phase I study was undertaken, in which patients with MM were vaccinated with an autologous DC/tumor cell fusion in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF) administration [53]. A commercial product is currently being tested in a phase III trial (Mylovenge™, Dendreon Corp., Seattle, WA, USA). Mylovenge (APC8020) is conducted by pulsing autologous DCs with the patient's Id. A recent report describing this commercial product showed the long-term survival of those receiving the vaccine in comparison with the survival of all other patients with MM who underwent autologous HSCT [54].
The goal of DC-based vaccines in cancer immunotherapy is to induce the expansion of tumor-specific T cells and establish immune responses. Cellular immunotherapy using DC-based vaccines have been used as therapeutic agents in MM patients; however, few patients experienced tumor regression, and the most common responses to current DC vaccines are only antigen-specific immune responses. This is required in a new strategy for the treatment of cancer, in which the intrinsic abilities of the immune system response to the DC-based vaccine has been modified to enhance the efficacy of vaccination. In particular, DCs in MM patients are a target of tumor-associated suppressive factors from the microenvironment, since
The initial success of DC-based vaccines involving immature or partially-mature "first-generation" DCs has been reported [55, 56]. The first therapeutic DC-based cancer vaccine against prostate cancer (Sipuleucel-T/Provenge) received US FDA approval and demonstrated the ability of the vaccine to prolong overall survival in patients with highly advanced cancer [57]. However, such DCs express suboptimal levels of costimulatory molecules and constitute weaker immunogens than subsequently implemented mature DCs, the "second generation" of clinically applied standard DCs (sDCs). sDC vaccines induced by cytokine cocktails containing IL-1β/TNF-α/IL-6/prostaglandin E2 (PGE2) have been developed [58]. Such DCs are fully mature and exhibit increased expression costimulatory molecules and CCR7 and high migratory responsiveness to lymph node-associated chemokines; they have been widely tested in clinical trials. However, to date, sDC vaccines still have limitations, including the mediation of Th2 polarization, promotion of secretion of the immunosuppressive cytokine IL-10 from DCs, inability to induce the Th1-type response (because PGE2 abolishes the secretion of IL-12p70), and high activity of such DCs in activating Tregs [59, 60]. In addition, the induction of antitumor CTL responses by DC-based vaccines benefits from high expression of costimulatory molecules, CCR7 responsiveness, and migration in response to lymphoid chemokines from mature DCs [61]. At the same time, high IL-12p70 secretion has been shown to dramatically enhance the ability of DCs to induce tumor-specific Th1 cells and CTLs and to promote tumor rejection in therapeutic mouse models [62]. Unfortunately, both first- and second-generation DCs were unable to induce effective CTL responses. Therefore, several investigators, including our group, have tried to develop potent DCs that possess all required features for inducing effective tumor-specific immune responses. We demonstrated the feasibility of inducing mature but "nonexhausted" DCs, by exposing immature DCs to type 1 and type 2 interferons (IFNs) combined with TNFα or Toll-like receptor (TLR) ligands. In particular, α-type 1-polarized DCs (αDC1s) that have been induced to mature using an αDC1-inducing cytokine cocktail containing IL-1β, TNF-α, IFN-α, IFN-γ, and polyinosinic:polycytidylic acid [poly(I:C)] have been developed to generate strong functional CTLs in several diseases and are on average 20-fold higher than sDCs [63, 64]. The resulting αDC1s showed high expression of several costimulatory molecules or high secretion of IL-12p70, improving the induction of tumor-specific and functional CTLs in comparison with that in sDCs
The other strategy to induce potent DCs from patients with MM was the use of helper cells to promote type 1-polarization of DCs. NK cells rapidly migrate to sites of infection and control the immune response in viral infections. Indeed, it has been demonstrated that NK cells play a major immunoregulatory role in the development of protective T cell-mediated immunity against intracellular pathogens and cancers [68]. Such helper activity of NK cells is at least partially mediated by the functional modulation of DCs. This phenomenon depended on the production of IFN-γ and TNF-α by activated NK cells [68] and was associated with enhanced tumor antigen cross-presentation and the induction of Th1 and CTL responses [69-71]. Recent data from our laboratory and other groups has demonstrated that such NK-DC interactions promote the subsequent induction of tumor-specific responses in CD4+ and CD8+ T cells, allowing NK cells to act as helper cells in the development of type-1 polarized DCs in responses against cancer [69-71]. Resting NK cells that are activated in the presence of TLR agonists, IL-2, and IFN-α can induce potent DCs with enhanced IL-12p70 production
We also found that the selected combinations of TLR agonists synergistically triggered a Th1-polarizing capacity through production of high amounts of IL-12p70 [72]. However, the major limitation of this combination was the decreased ability of these cells to migrate into lymph nodes compared to that of conventional DCs. When DCs are activated by individual TLR agonists, such as LPS or poly(I:C), or by a combination of 2 TLR agonists, all cells mature and produce high levels of bioactive IL-12p70 in early phase of maturation and after subsequent stimulation with T cell-related DC activating signal CD40L. In addition, the phenotyes of these matured DCs were markedly enhanced when a combination of type I and type II IFN was added. These combinations of stimuli also regulated the expression of CD38 and CD74, markers related to the full activation of DCs [73, 74]. We demonstrated that at the optimal concentration used to stimulate DCs, the combination of 2 TLR agonists with type I and II IFNs can be used to generate fully mature DCs that have high migratory capacity and can maintain IL-12p70-producing capacity. The regulation of CD38 and CD74 in DCs could in turn enhance the migratory activity of DCs in the presence of a combination of 2 TLR agonists and IFNs [75].
Ursolic acid (URC) is isolated from
The clinical responses of DC vaccines using Id-pulsed DCs have been disappointing. The use of TAAs can induce more significant immune responses than Id. Although a single TAA can induce antitumor immune responses against MM, tumors may escape immune recognition via down-regulation of specific antigen expression. In addition, only a small number of tumor samples from MM patients showed a similar level of TAA expression, limiting the usefulness of TAAs in MM. Therefore, to overcome the effects of TAA-based immunotherapy, our group has attempted to use other tumor antigens that improve the cross-presentation of the DC vaccine in patients with MM.
The selected antigen should possess the best characteristics for induction of cross-presentation and should be tumor specific and easily available, but should not induce immune suppression. Whole tumor antigens, including myeloma cell lysates and apoptotic bodies from myeloma cells, are the best tumor antigens and have been selected by many investigators. In practical terms, a number of patients with MM have less than 50% myeloma cells in the BM at diagnosis or during progression of the disease. When mononuclear cells from the BM are used as a source of tumor antigens, contamination with normal cells, especially lymphocytes, may occur. Thus, it is necessary to use purified, optimized myeloma cells, if possible, as a source of tumor antigens for the generation of myeloma-specific CTLs stimulated by DCs [44]. We have shown that the function of DCs was affected by the concentration of myeloma cell lysates (i.e., higher concentrations of lysates suppressed T cell stimulatory capacities) [44]. CTLs that were generated by purified, optimized myeloma cell lysates pulsed with DCs demonstrated much stronger cytotoxicity against autologous plasma cells. These findings indicate that it is important to optimize the concentration of myeloma cell lysates that were loaded onto DCs to potentiate their function.
The use of whole tumor cells instead of single antigens may enhance antitumor effects, but may also target multiple tumor variants and counteract tumor immune evasion. However, it is impractical to obtain sufficient amounts of purified autologous myeloma cells for tumor antigens in the clinical setting of MM. As an alternative source of tumor-relevant antigens, allogeneic tumor cells or established cancer cell lines have been used to overcome this limitation in various tumors [46, 47]. In clinical practice, allogeneic myeloma cell lines may be an effective source of universal tumor antigens that could be used to load DCs for the generation of myeloma-specific CTLs in MM patients. Tumor antigens derived from DC-loaded irradiated allogeneic myeloma cells could generate myeloma-specific CTLs against autologous myeloma cells in patients with MM [46, 71]. The success of using an allogeneic myeloma cell line as tumor antigens led to the possibility that allogeneic myeloma cells could also be used as a viable source of tumor antigens in the context of appropriate major MHC alleles to autologous CTLs. We investigated the possibility of using autologous DCs loaded with an apoptotic allogeneic matched monoclonal immunoglobulin subtype of myeloma and showed that the CTL generated by these tumor antigen-loaded DCs could generate myeloma-specific CTLs against autologous myeloma cells in MM patients [47]. These findings suggested that allogeneic myeloma cell lines and allogeneic matched monoclonal immunoglobulin subtype of myeloma were effective tumor antigens capable of inducing functional CTLs against patients' own myeloma cells.
The suppressive effects of tumor cells during DC generation have been explained previously by the ability of the tumor microenvironment to suppress DC differentiation [78]. This suppression is due to the activation of STAT3 and the production of immunosuppressive factors. These factors can influence STAT3 and extracellular signal-regulated kinase (ERK) phosphorylation, resulting in hyperactivation of STAT3 and ERK, which may be responsible for defective DC differentiation [79]. In addition to generate potent and specific tumor antigen-loaded DCs for vaccination, alternative methods have attempted to restore defective DC function and to enhance DC function in MM. The immune-mediated antitumor effects of DCs are enhanced by inhibition of the janus-activated kinase 2 (JAK2)/STAT3 pathway [80], inhibition of p38 or activation of the MEK/ERK or mitogen-activated protein kinase (MAPK) pathways, and neutralization of IL-6 [81]. Recently, we found that when MM-specific DCs were generated by loading tumor lysates from myeloma cells collected at diagnosis or during the relapsed/progressive state, these DCs showed lower phenotypic maturation, less T cell stimulatory capacity, less CTL activity, and highly abnormal IL-6 and IL-12 secretion compared to the secretion by unloaded DCs. Moreover, the levels of VEGF, phospho-STAT3, and phospho-ERK1/2 in DCs were significantly higher than in unloaded DCs. After neutralization of VEGF activity, DC functions, signal transduction, and cytokine production returned to normal. Therefore, inhibitory factors and abnormal signaling pathways during maturation with tumor antigens in DCs may be responsible for the defective activity of DCs in MM, and these abnormalities may be overcome by neutralizing the signaling that would lead to a suppressed immune response [82]. Currently, we are working to develop strategies that recover dysfunction of DCs caused from loading tumor antigens through treatment of myeloma cells with a combination of the selective JAK/STAT3 inhibitor JSI-124 and proteasome inhibitor bortezomib. We observed that production of inhibitory cytokines, such as IL-10, IL-23, and especially IL-6, which is known as the main plasma cell growth factor that induces DC dysfunction in MM patients, was down-regulated in DCs loaded with JSI-124- and bortezomib-induced dying myeloma tumor cells. Furthermore, phospho-STAT3 was also down-regulated in these DCs. Consistent with their recovery functions, these DCs displayed a superior ability to induce myeloma-specific responses of CTLs (unpublished data). We found that pretreatment of myeloma cells with a combination of JSI-124 and bortezomib recovered DC dysfunction caused by loading of dying myeloma cells through the up-regulation of Hsp90 and down-regulation of STAT3 phosphorylation and inhibitory cytokine production. These DCs could generate potent myeloma-specific CTLs.
The efficacies of 3 features, namely, fully mature status, high migratory responsiveness to lymph-node associated chemokines (CCR7 ligands), and ability to produce high levels of IL-12p70, determine whether DCs are appropriate carriers for anticancer vaccines [63]. However, although α-type 1-polarized DCs possess all of the above features, the expression of CCR7 and the migration of DCs in response to the CCR7 ligand (CCL19 and CCL21) were lower in these DCs than in conventional sDCs [63, 64] due to the lack of PGE2, a critical component of the standard cytokine cocktail that is important for the expression of CCR7 and the responsiveness of DCs to CCR7 ligands [83]. We also investigated whether migration could be enhanced by increasing the expression of CCR7 or the migration of DCs and found that after stimulation of monocyte-derived DCs by CCL21 2 hr before the end of maturation by α-type 1-polarized cytokine cocktail, the migration of harvested DCs through transwells was faster than that of unstimulated DCs. Interestingly, phenotypes and cytokine production levels were similar in both DCs. Furthermore, we also found that CCL21-treated DCs could induce the ability to stimulate tumor-specific responses of CTLs by the enhancement of CXCL10 (IP-10) secretion (unpublished data). We are now investigating this phenomenon to generate monocyte-derived DCs in MM patients and
Therapeutic DC vaccines need to be highly effective at inducing the expansion of tumor-specific T cells and need to avoid interaction with and induction of immunosuppressor cells, such as Tregs and MDSCs. Recently, type 1-polarized DCs were shown to suppress the secretion of CCL22 (Tregand Th2-type attracting chemokines), enhance the secretion of CCL5 and CXCL10 (Th1- and effector T cell-attracting chemokines), and suppress the induction of Tregs compared to sDCs [84]. In addition, to enhance the antitumor effects of DC-based vaccines in preclinical
We are developing a mouse myeloma combination therapy model, in which the myeloma tumor-bearing mice were vaccinated with a combination of DCs and lenalidomide. Lenalidomide is a thalidomide analog that is more potent and has less adverse effects [11]. Lenalidomide can induce apoptosis; inhibit the production of cytokines (IL-6, VEGF, and TNF-α) in BM; and stimulate T cell and NK cell proliferation, cytotoxicity, and cytokine (IL-2, IFN-γ) production [11]. In addition, lenalidomide can inhibit the frequency and function of Tregs, resulting in inhibition of Treg expansion and forkehad box P3 (FOXP3) expression in cancer patients [87]. Interestingly, this drug can also induce the activation of APC function, resulting in upregulation of CD40, CD80, and CD86, in chronic lymphocytic leukemia [88]. Therefore, lenalidomide could be used as an immunomodulatory drug in order to enhance immune responses against cancer. Our
Despite their limitations, recent clinical studies have suggested that DC-based vaccinations may be potential therapies that induce tumor responses and prolong the survival of patients with MM. Further investigations are needed to increase DC-based potency and improve immune responses, and these investigations should focus on the identification of alternative tumor antigens uniquely or specifically expressed on myeloma cells, recovery or restoration of the dysfunction of DCs in MM patients, induction of T cells with desirable effector functions rather than regulatory functions, migration into lymph nodes to stimulate T cells, and clarification of the ability of tumor-specific CTLs to recognize and kill tumor cells. We expect that type 1-polarized DCs can be developed to generate strong functional myeloma-specific CTLs. Allogeneic myeloma cell lines or allogeneic myeloma cells may be an effective source of universal tumor antigens that could be used to load to DCs for the successful generation of myeloma-specific CTLs. Eventually, combination therapy, in which a DC vaccine is combined with either alternative therapy, including chemotherapy, radiation therapy, molecular target therapy, or other immunotherapy (adoptive T cell therapy, NK cell therapy, etc.), or with an adjuvant, will provide vigorous and maintained immune responses with improved clinical efficacy.
Key points to improve DC vaccination in cancer patients. Abbreviations: CTL, cytotoxic T lymphocyte; DCs, dendritic cells; TA, tumor antigen; LNs, lymph nodes; Treg, regulatory T cell; MDSC, myeloid-derived suppressor cell.
Table 1 . Summary of clinical studies using DC-based vaccinations..
Abbreviations: DC, dendritic cell; TA, tumor antigen; imDC, immature DC; Mo-DC, monocyte-derived DC; Id, idiotype; mMo-DC, mature Mo-DC; KLH, keyhole limpet hemocyanin; CTL, cytotoxic T lymphocyte; PD, progressive disease; PR, partial response; SD, stable disease; CR, complete response..
Haerim Chung, Hyunsoo Cho
Blood Res 2023; 58(4): 166-172Ja Min Byun, Sung-Soo Park, Sung-Soo Yoon, Ari Ahn, Myungshin Kim, Jung Yeon Lee, Young-Woo Jeon, Seung-Hwan Shin, Seung-Ah Yahng, Youngil Koh, Chang-Ki Min
Blood Res 2023; 58(2): 83-90Fatıma Ceren Tuncel, Istemi Serin, Sacide Pehlivan, Yasemin Oyaci, Mustafa Pehlivan
Blood Res 2022; 57(4): 250-255
Key points to improve DC vaccination in cancer patients. Abbreviations: CTL, cytotoxic T lymphocyte; DCs, dendritic cells; TA, tumor antigen; LNs, lymph nodes; Treg, regulatory T cell; MDSC, myeloid-derived suppressor cell.