Korean J Hematol 2012; 47(3):
Published online September 25, 2012
https://doi.org/10.5045/kjh.2012.47.3.225
© The Korean Society of Hematology
1Department of Laboratory Medicine, Gachon University Gil Medical Center, Incheon, Korea.
2Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea.
Correspondence to : Correspondence to Jeong Yeal Ahn, M.D. Department of Laboratory Medicine, Gachon University Gil Medical Center, 1198, Guwol-dong, Namdong-gu, Incheon 405-706, Korea. Tel: +82-32-460-3863, Fax: +82-32-460-3415, jyahn@gilhospital.com
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Radioiodine is regularly used in the treatment of thyroid cancer to eliminate residual malignant tissue after thyroidectomy and to treat metastasis. Because of the low dose of radioiodine used to treat thyroid cancer patients, leukemia is an uncommon complication of exposure to radioiodine. Here, we present a patient who developed therapy-related acute myeloid leukemia with inv(16)(p13.1q22);
Keywords Radioiodine, Thyroid cancer, Acute myeloid leukemia,
Therapy-related acute myeloid leukemia (t-AML) caused by radioactive iodine (RAI) occurs in less than 2% of thyroid cancer patients and is associated with a poor therapeutic response and prognosis [1-3]. Many cases of t-AML have occurred in >50-year-old patients after they received a cumulative radioiodine dose of more than 800 mCi, with intervals of less than 12 months between 131I therapies [1-3]. Over 90% patients with t-AML or therapy-related myelodysplastic syndrome (t-MDS) exhibit an abnormal karyotype with approximately 70% patients having an unbalanced chromosomal aberration and the remaining 30% having a balanced chromosomal translocation [4]. Inv(16)(p13.1q22) is found in approximately 5-8% of patients with
Here, we report the case of a 38-year-old woman who developed t-AML with inv(16)(p13.1q22).
A 38-year-old woman was admitted to our hematology clinic with a 10-day history of dyspnea and dizziness. She was diagnosed with papillary thyroid cancer 15 months prior to the admission, and had received a single dose of 150 mCi 131I. The patient's condition remained stable thereafter on a suppressive dose of thyroid hormone. On physical examination, the patient appeared pale without other abnormalities. Peripheral blood analysis revealed hemoglobin level of 7.2 g/dL; platelet counts of 7,000×109/L; and a white blood cell count of 47.39×109/L with 60% blasts, 23% monocytes, and 4% eosinophils (Fig. 1A). The bone marrow (BM) aspiration revealed 10% myeloblasts, 20.4% monoblasts/promonocytes, and 53.4% eosinophils (Fig. 1B).
Immunophenotyping using flow cytometry revealed 2 populations of blast cells. One population showed positivity for CD45, CD34, myeloperoxidase (MPO), CD13, CD33, CD117, CD14, and HLA-DR, while the other population showed positivity for CD45, MPO, CD13, CD33, CD14, and HLA-DR. Blast cells were stained for MPO and α-naphthyl-butyrate esterase (Fig. 1C and 1D). BM cytogenetic analysis showed inv(16)(p13.1q22) in 20 analyzed metaphases (Fig. 1E). The result of fluorescence
Blasts in peripheral blood and BM decreased rapidly after induction chemotherapy with cytarabine (100 mg/m2 for 7 days) and idarubicin (12 mg/m2 for 3 days), and the
RAI therapy has been the treatment of choice for toxic nodular goiter, Grave disease, and metastatic thyroid cancer. The National Thyroid Cancer Treatment Co-operative Group recently reported that RAI treatment in thyroid carcinoma had been administered in 62-75% of individuals in a cohort study [5]. Meta-analysis using 16,502 patients showed that the relative risk (RR) of second primary malignancy was increased in thyroid cancer patients treated with 131I (RR=1.19), and that the RR for the development of leukemia was increased by 2.5-fold in thyroid cancer patients treated with RAI [1].
Even though leukemia is a rare complication of 131I therapy in these patients, the possible carcinogenic effect of 131I is still a concern. Pochin described 4 cases of acute leukemia in 175 patients treated with 131I for thyroid cancer, observing a leukemia incidence of 2.3% [2]. One group reported a case that the latency period from exposure to the occurrence of acute leukemia was 14 months [6]. The patient described here had received only a single dose of 150 mCi, and she developed AML in a shorter latency period than that seen in other t-AML cases. Moreover, Roldán reported 2 cases of AML, that is, AML with maturation (M2, French-American-British (FAB) classification) and acute promyelocytic leukemia, after a single dose of 150 mCi in patients who were diagnosed with papillary thyroid carcinoma. The latency periods of these 2 patients were 2 and 5 years, respectively [7].
Another report by Anderson et al. focused on 48 patients who had a history of other primary disease such as breast cancer, lymphoma, or various other solid tumor and non-malignant disease, and were diagnosed with t-MDS/t-AML with inv(16). Ten of these patients (20.8%) received radiation therapy only, and inv(16) is more frequent in patients treated with only radiotherapy [8]. Patients with inv(16) exhibited a shorter latency period from the start of treatment for the primary tumor to the development of t-MDS/t-AML than did patients with other therapy-related diseases (median, 22 months; range, 8-533 months). Within the inv(16) subgroup, patients younger than 55 years of age had a longer survival period compared with patients older than 55 years of age [8]. However, Schroeder et al. had suggested that t-MDS/t-AML after RAI treatment was usually associated with an advanced disease stage, adverse chromosomal changes, a low response to induction chemotherapy, and a short overall survival even with the numerous treatment options [9].
Based on these findings, the patient presented here may be expected to have a poor outcome despite the presence of less severe risk factors such as inv(16) and young age. However, in the previous study, the t-AML with inv(16) (p13.1q22) or t(16;16)(p13.1;q22) was morphologically identical to its
The common
Based on these observations, Gilliland proposes a two-hit theory for leukemogenesis in which AML arises from the collaboration between 2 classes of mutations [15]. Class I mutations confer a proliferative and/or survival advantage to cells (
In conclusion, only a small proportion of thyroid cancer patients treated with radioiodine have developed leukemia, and different dose ranges and latent periods have been reported in various trials. The case presented here is a rare case of inv(16) in t-AML that developed after a single low-dose iodine therapy. Although the risk of leukemia after 131I exposure is hardly considered a contraindication to 131I therapy, hematological follow-up of patients admitted for 131I treatment is recommended.
Morphologic and cytogenetic study.
Korean J Hematol 2012; 47(3): 225-228
Published online September 25, 2012 https://doi.org/10.5045/kjh.2012.47.3.225
Copyright © The Korean Society of Hematology.
Ji Hun Jeong1, Jeong Yeal Ahn1*, Soon Ho Park1, Mi Jung Park1, Kyung Hee Kim1, and Jun Shik Hong2
1Department of Laboratory Medicine, Gachon University Gil Medical Center, Incheon, Korea.
2Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea.
Correspondence to:Correspondence to Jeong Yeal Ahn, M.D. Department of Laboratory Medicine, Gachon University Gil Medical Center, 1198, Guwol-dong, Namdong-gu, Incheon 405-706, Korea. Tel: +82-32-460-3863, Fax: +82-32-460-3415, jyahn@gilhospital.com
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Radioiodine is regularly used in the treatment of thyroid cancer to eliminate residual malignant tissue after thyroidectomy and to treat metastasis. Because of the low dose of radioiodine used to treat thyroid cancer patients, leukemia is an uncommon complication of exposure to radioiodine. Here, we present a patient who developed therapy-related acute myeloid leukemia with inv(16)(p13.1q22);
Keywords: Radioiodine, Thyroid cancer, Acute myeloid leukemia,
Therapy-related acute myeloid leukemia (t-AML) caused by radioactive iodine (RAI) occurs in less than 2% of thyroid cancer patients and is associated with a poor therapeutic response and prognosis [1-3]. Many cases of t-AML have occurred in >50-year-old patients after they received a cumulative radioiodine dose of more than 800 mCi, with intervals of less than 12 months between 131I therapies [1-3]. Over 90% patients with t-AML or therapy-related myelodysplastic syndrome (t-MDS) exhibit an abnormal karyotype with approximately 70% patients having an unbalanced chromosomal aberration and the remaining 30% having a balanced chromosomal translocation [4]. Inv(16)(p13.1q22) is found in approximately 5-8% of patients with
Here, we report the case of a 38-year-old woman who developed t-AML with inv(16)(p13.1q22).
A 38-year-old woman was admitted to our hematology clinic with a 10-day history of dyspnea and dizziness. She was diagnosed with papillary thyroid cancer 15 months prior to the admission, and had received a single dose of 150 mCi 131I. The patient's condition remained stable thereafter on a suppressive dose of thyroid hormone. On physical examination, the patient appeared pale without other abnormalities. Peripheral blood analysis revealed hemoglobin level of 7.2 g/dL; platelet counts of 7,000×109/L; and a white blood cell count of 47.39×109/L with 60% blasts, 23% monocytes, and 4% eosinophils (Fig. 1A). The bone marrow (BM) aspiration revealed 10% myeloblasts, 20.4% monoblasts/promonocytes, and 53.4% eosinophils (Fig. 1B).
Immunophenotyping using flow cytometry revealed 2 populations of blast cells. One population showed positivity for CD45, CD34, myeloperoxidase (MPO), CD13, CD33, CD117, CD14, and HLA-DR, while the other population showed positivity for CD45, MPO, CD13, CD33, CD14, and HLA-DR. Blast cells were stained for MPO and α-naphthyl-butyrate esterase (Fig. 1C and 1D). BM cytogenetic analysis showed inv(16)(p13.1q22) in 20 analyzed metaphases (Fig. 1E). The result of fluorescence
Blasts in peripheral blood and BM decreased rapidly after induction chemotherapy with cytarabine (100 mg/m2 for 7 days) and idarubicin (12 mg/m2 for 3 days), and the
RAI therapy has been the treatment of choice for toxic nodular goiter, Grave disease, and metastatic thyroid cancer. The National Thyroid Cancer Treatment Co-operative Group recently reported that RAI treatment in thyroid carcinoma had been administered in 62-75% of individuals in a cohort study [5]. Meta-analysis using 16,502 patients showed that the relative risk (RR) of second primary malignancy was increased in thyroid cancer patients treated with 131I (RR=1.19), and that the RR for the development of leukemia was increased by 2.5-fold in thyroid cancer patients treated with RAI [1].
Even though leukemia is a rare complication of 131I therapy in these patients, the possible carcinogenic effect of 131I is still a concern. Pochin described 4 cases of acute leukemia in 175 patients treated with 131I for thyroid cancer, observing a leukemia incidence of 2.3% [2]. One group reported a case that the latency period from exposure to the occurrence of acute leukemia was 14 months [6]. The patient described here had received only a single dose of 150 mCi, and she developed AML in a shorter latency period than that seen in other t-AML cases. Moreover, Roldán reported 2 cases of AML, that is, AML with maturation (M2, French-American-British (FAB) classification) and acute promyelocytic leukemia, after a single dose of 150 mCi in patients who were diagnosed with papillary thyroid carcinoma. The latency periods of these 2 patients were 2 and 5 years, respectively [7].
Another report by Anderson et al. focused on 48 patients who had a history of other primary disease such as breast cancer, lymphoma, or various other solid tumor and non-malignant disease, and were diagnosed with t-MDS/t-AML with inv(16). Ten of these patients (20.8%) received radiation therapy only, and inv(16) is more frequent in patients treated with only radiotherapy [8]. Patients with inv(16) exhibited a shorter latency period from the start of treatment for the primary tumor to the development of t-MDS/t-AML than did patients with other therapy-related diseases (median, 22 months; range, 8-533 months). Within the inv(16) subgroup, patients younger than 55 years of age had a longer survival period compared with patients older than 55 years of age [8]. However, Schroeder et al. had suggested that t-MDS/t-AML after RAI treatment was usually associated with an advanced disease stage, adverse chromosomal changes, a low response to induction chemotherapy, and a short overall survival even with the numerous treatment options [9].
Based on these findings, the patient presented here may be expected to have a poor outcome despite the presence of less severe risk factors such as inv(16) and young age. However, in the previous study, the t-AML with inv(16) (p13.1q22) or t(16;16)(p13.1;q22) was morphologically identical to its
The common
Based on these observations, Gilliland proposes a two-hit theory for leukemogenesis in which AML arises from the collaboration between 2 classes of mutations [15]. Class I mutations confer a proliferative and/or survival advantage to cells (
In conclusion, only a small proportion of thyroid cancer patients treated with radioiodine have developed leukemia, and different dose ranges and latent periods have been reported in various trials. The case presented here is a rare case of inv(16) in t-AML that developed after a single low-dose iodine therapy. Although the risk of leukemia after 131I exposure is hardly considered a contraindication to 131I therapy, hematological follow-up of patients admitted for 131I treatment is recommended.
Morphologic and cytogenetic study.
Hee Sue Park
Blood Res 2024; 59():Saba Manoochehrabadi, Morteza Talebi, Hossein Pashaiefar, Soudeh Ghafouri‑Fard, Mohammad Vaezi, Mir Davood Omrani and Mohammad Ahmadvand
Blood Res 2024; 59():Jung Hwan Lee, Hee Young Ju, Ju Kyung Hyun, So Jin Kim, Hee Won Cho, Jae Kyung Lee, Ji Won Lee, Ki Woong Sung, Keon Hee Yoo
Blood Res 2023; 58(4): 181-186
Morphologic and cytogenetic study.