Hebat-Allah Hassan Nashaat, Maha Anani, Fadia M. Attia
Blood Res 2022; 57(1): 6-12Abstract : Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease 2019 (COVID-19) pandemic that has strained health care systems worldwide and resulted in high mortality. The current COVID-19 treatment is based on supportive and symptomatic care. Therefore, convalescent plasma (CP), which provides passive immunization against many infectious diseases, has been studied for COVID-19 management. To date, a large number of randomized and non-randomized clinical trials as well as many systematic reviews have revealed conflicting results. This article summarizes the basic principles of passive immunization, particularly addressing CP in COVID-19. It also evaluates the effectiveness of CP as a therapy in patients with COVID-19, clinical trial reports and systematic reviews, regulatory considerations and different protocols that are authorized in different countries to use it safely and effectively. An advanced search was carried out in major databases (PubMed, Cochrane Library, and MEDLINE) and Google Scholar using the following key words: SARS-CoV-2, COVID-19, convalescent plasma, and the applied query was “convalescent plasma” AND “COVID-19 OR SARS-CoV-2”. The results were filtered and duplicate data were removed. Collective evidence indicates that two cardinal players determine the effectiveness of CP use, time of infusion, and quality of CP. Early administration of CP with high neutralizing anti-spike IgG titer is hypothesized to be effective in improving clinical outcome, prevent progression, decrease the length of hospital stay, and reduce mortality. However, more reliable, high quality, well-controlled, double-blinded, randomized, international and multicenter collaborative trials are still needed.
Ja Min Byun, Seung-Joo Yoo, Hyeong-Joon Kim, Jae-Sook Ahn, Youngil Koh, Jun Ho Jang, Sung-Soo Yoon
Blood Res 2022; 57(1): 13-19Abstract : The mutational and epigenetic landscape of acute myeloid leukemia (AML) has become increasingly well understood in recent years, informing on biological targets for precision medicine. Among the most notable findings was the recognition of mutational hot-spots in the isocitrate dehydrogenase (IDH) genes. In this review, we provide an overview on the IDH1/2 mutation landscape in Korean AML patients, and compare it with available public data. We also discuss the role of IDH1/2 mutations as biomarkers and drug targets. Taken together, occurrence of IDH1/2 mutations is becoming increasingly important in AML treatment, thus requiring thorough examination and follow-up throughout the clinical course of the disease.
Young Hoon Park, Dae-Young Kim, Seongkoo Kim, Young Bae Choi, Dong-Yeop Shin, Jin Seok Kim, Won Sik Lee, Yeung-Chul Mun, Jun Ho Jang, Jong Wook Lee, Hoon Kook, on behalf of Korean Aplastic Anemia Working Party
Blood Res 2022; 57(1): 20-28Abstract : Despite the availability of therapies to treat patients with immune thrombocytopenia (ITP), there is currently little data from randomized trials to assist clinicians in managing patients. The evidence-based guidelines of the Korean Society of Hematology Aplastic Anemia Working Party (KSHAAWP) are intended to support patients and physicians in the management of ITP. Experts from the KSHAAWP discussed and described this guideline according to the current treatment situation for ITP in Korea and finalized the guidelines. The expert panel recommended the management of ITP in adult and pediatric patients with newly diagnosed, persistent, and chronic disease refractory to first-line therapy with minor bleeding. Management approaches include observation and administration of corticosteroids, intravenous immunoglobulin, anti-D immunoglobulin, and thrombopoietin receptor agonists. Currently, evidence supporting strong recommendations for various management approaches is lacking. Therefore, a large focus was placed on shared decision-making, especially regarding second-line treatment.
Tahereh Zadeh Mehrizi, Sedigheh Amini Kafiabad, Peyman Eshghi
Blood Res 2021; 56(4): 215-228Abstract : Maintaining the quality of platelet products and increasing their storage time are priorities for treatment applications. The formation of platelet storage lesions that limit the storage period and preservation temperature, which can prepare a decent environment for bacterial growth, are the most important challenges that researchers are dealing with in platelet preservation. Nanotechnology is an emerging field of science that has introduced novel solutions to resolve these problems. Here, we reviewed the reported effects of polymeric nanoparticles—including chitosan, dendrimers, polyethylene glycol (PEG), and liposome—on platelets in articles from 2010 to 2020. As a result, we concluded that the presence of dendrimer nanoparticles with a smaller size, negative charge, low molecular weight, and low concentration along with PEGylation can increase the stability and survival of platelets during storage. In addition, PEGylation of platelets can also be a promising approach to improve the quality of platelet bags during storage.
Zahra Nekoukar, Minoo Moghimi, Ebrahim Salehifar
Blood Res 2021; 56(4): 229-242Abstract : Chronic myeloid leukemia (CML), a myeloproliferative disorder caused by the over activity of BCR-ABL1 (breakpoint cluster region-Abelson), has been successfully treated by Tyrosine kinase inhibitors (TKIs). While imatinib is known as the first-line treatment of CML, in some cases other TKIs including dasatinib, nilotinib, bosutinib, and ponatinib may be preferred. Dasatinib, a second-generation TKI, inhibits multiple family kinases including BCR-ABL, SRC family kinases, receptor kinases, and TEC family kinases. It is effective against most imatinib-resistant cases except T315I mutation. Despite the superiority of dasatinib in its hematologic and cytogenetic responses in CML compared to imatinib, its potentially harmful pulmonary complications including pleural effusion (PE) and pulmonary arterial hypertension (PAH) may limit its use. Appropriate management of these serious adverse reactions is critical in both improving the quality of life and the outcome of the patient. In this narrative review, we will scrutinize the pulmonary complications of dasatinib and focus on the management of these toxicities.
Poojith Nuthalapati, Mohan Krishna Ghanta, Nagabhishek Sirpu Natesh, Bhaskar L.V.K.S.
Blood Res 2021; 56(2): 61-64Abstract : The coronavirus disease 2019 (COVID-19) pandemic has emerged as a major threat to all healthcare systems across the globe, and it was declared a public health emergency of international concern by the World Health Organization (WHO). The novel coronavirus affects the respiratory system, producing symptoms such as fever, cough, dyspnea, and pneumonia. The association between COVID-19 and coagulation has been previously reported. Due to several inflammatory changes that occur in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections such as alterations in the levels of clotting factors, platelet activation leads to thrombus formation in coronary and cerebral vessels, leading to myocardial infarction and cerebrovascular accidents, respectively. Unfortunately, the progression of hypercoagulability in COVID-19 is rapid in patients with and without comorbidities. Hence, the proper monitoring of thrombotic complications in patients with COVID-19 is essential to avoid further complications. The implementation of guidelines for antithrombotic treatments based on the presentation of the disease is recommended. This review discusses the symptoms and mechanisms of upregulated coagulation in patients with COVID-19.
Jun Ho Yi
Blood Res 2021; 56(S1): S1-S4Abstract : Despite substantially improved survival with rituximab-based treatment regimens, there is an unmet medical need for better treatments of B-cell lymphoma, particularly for patients with relapsed or refractory disease. Retreatment with rituximab exerts a limited effect in these patients, and platinum-based salvage treatment followed by autologous stem cell transplantation remains the only curative option. Recent strategies have focused on targeting novel B-cell surface markers, inhibiting B-cell receptor signaling, and enhancing the cytotoxicity of effector cells. The current article will review the recent progress in immunochemotherapy targeting other than CD20 for B-cell lymphomas.
Jihyun Kwon
Blood Res 2021; 56(S1): S5-S16Abstract : Chronic myelomonocytic leukemia (CMML) is a clonal disorder of hematopoietic cells and is a complex of heterogeneous conditions with both myeloproliferative and myelodysplastic features. The diagnosis of CMML is made using morphologic criteria including monocyte-dominant leukocytosis, dysplastic changes, and increased blasts in the bone marrow. Recently, the identification of monocyte subtypes in peripheral blood using multiparameter flow cytometry has been actively studied. Chromosomal abnormalities are the basis of CMML risk stratification, and mutations in several genes including ASXL1 are known to be important not only for the diagnosis and treatment of this disease but also for predicting its prognosis. The standard treatment principles for CMML have not yet been clearly defined; however, hypomethylating agents are mainly considered the frontline therapy in most cases. Although allogeneic hematopoietic stem cell transplantation has limited applications owing to its toxicity, it still plays an important role as the only curative treatment option. Researchers are continuing to develop new drugs for CMML treatment and to prove their clinical usefulness. This review summarizes what is known to date on the diagnosis, treatment, and prognostic factors of CMML and presents future directions by analyzing recent research trends.
Yu Ri Kim, Dae-Young Kim
Blood Res 2021; 56(S1): S17-S25Abstract : Hemophagocytic lymphohistiocytosis (HLH) is a syndrome of defective apoptosis, a disruption of the regulatory pathway that terminates immune and inflammatory responses. Fever, cytopenia, splenomegaly, and/or hemophagocytosis are typical findings of this syndrome. HLH can be induced by genetic disorders (familial) or secondary causes. Familial HLH is rare, while secondary causes in adults include infection, autoimmunity, and malignancy. HLH in adults tends to be confused with or misdiagnosed as sepsis, mainly due to similar clinical manifestations and laboratory findings, which make it difficult to diagnose HLH rapidly and adopt immunosuppressive agents and/or chemotherapy adequately. Treatment of pediatric HLH using HLH-2004 or multi-agent chemotherapy can be applied in adult patients, although the dose and type of drug need to be adjusted. It is highly recommended that allogenic hematopoietic stem cell transplantation should be used in patients who become reactivated or are refractory to the initial treatment as soon as possible to improve survival. Future clinical trials are warranted to determine more suitable treatments for adult patients with HLH.
Sung-Eun Lee
Blood Res 2021; 56(S1): S26-S33Abstract : The identification of driver mutations in Janus kinase (JAK) 2, calreticulin (CALR), and myeloproliferative leukemia (MPL) has contributed to a better understanding of disease pathogenesis by highlighting the importance of JAK signal transducer and activator of transcription (STAT) signaling in classical myeloproliferative neoplasms (MPNs). This has led to the therapeutic use of novel targeted treatments, such as JAK2 inhibitors. More recently, with the development of next-generation sequencing, additional somatic mutations, which are not restricted to MPNs, have been elucidated. Treatment decisions for MPN patients are influenced by the MPN subtype, symptom burden, and risk classification. Although prevention of vascular events is the main objective of therapy for essential thrombocythemia (ET) and polycythemia vera (PV) patients, disease-modifying drugs are needed to eradicate clonal hematopoiesis and prevent progression to more aggressive myeloid neoplasms. JAK inhibitors are a valuable therapeutic strategy for patients with myelofibrosis (MF) who have splenomegaly and/or disease-related symptoms, but intolerance, refractory, resistance, and disease progression still present challenges. Currently, allogeneic stem cell transplantation remains the only curative treatment for MF, but it is typically limited by age-related comorbidities and high treatment-related mortality. Therefore, a better understanding of the molecular pathogenesis and potential new therapies with the aim of modifying the natural history of the disease is important. In this article, I review the current understanding of the molecular basis of MPNs and clinical studies on potential disease-modifying agents.
Nisha Marwah, Manali Satiza, Niti Dalal, Sudhir Atri, Monika Gupta, Sunita Singh, Rajeev Sen
Blood Res 2021;56: 26-30Junshik Hong, Seo-Yeon Ahn, Yoo Jin Lee, Ji Hyun Lee, Jung Woo Han, Kyoung Ha Kim, Ho-Young Yhim, Seung-Hyun Nam, Hee-Jin Kim, Jaewoo Song, Sung-Hyun Kim, Soo-Mee Bang, Jin Seok Kim, Yeung-Chul Mun, Sung Hwa Bae, Hyun Kyung Kim, Seongsoo Jang, Rojin Park, Hyoung Soo Choi, Inho Kim, Doyeun Oh; on behalf of the Korean Society of Hematology Thrombosis and Hemostasis Working Party
Blood Res 2021;56: 6-16Yu Ri Kim, Dae-Young Kim
Blood Res 2021;56: S17-S25Seyed Mohammad Sadegh Pezeshki, Najmadin Saki, Mehran Varnaseri Ghandali, Alireza Ekrami, Arshid Yousefi Avarvand
Blood Res 2021;56: 38-43+82-2-516-6582